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Compartmental Models for Temporal Dynamics

▪ Set of Ordinary Differential Equations (ODEs) for closed populations (no movement) 
▪ Model Disease propagation in homogeneous compartments 
▪ Fundamental assumptions may not hold in large populations 
▪ Vital statistics such as the number of births and deaths may not be included here 

▪ Various compartments depicting stages of disease propagation 
▪ Susceptible Infected Recovered (SIR) 
▪ Susceptible Infected Recovered Susceptible (SIRS) 
▪ Susceptible Exposed Infected Recovered (SEIR) 
▪ Susceptible Exposed Infected Recovered Dead (SEIRD) 
▪ SIDARTHE (https://www.nature.com/articles/s41591-020-0883-7)

Julia notebook - https://github.com/sjster/Epidemic

https://www.nature.com/articles/s41591-020-0883-7


Real-world Epidemic Modeling (Spatio-Temporal Dynamics)
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GLEAM

▪ GLEAM divides the population into grid cells (25km x 25km) 
▪ Models mobility of people in time steps 
▪ Global mobility - Airports as transportation hubs (Airline traffic data 

from IATA) 
▪ Local mobility - Short-range commuting of population between 

urban centers 
▪ Use stochastic mathematical models to characterize the disease 
▪ Make millions of simulations to make predictions



The Data

▪ Get the COVID case data from the Johns Hopkins University CSSE Github page  
▪ https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/

csse_covid_19_time_series 
▪ Confirmed cases 

▪  https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/
csse_covid_19_data/csse_covid_19_time_series/
time_series_covid19_confirmed_global.csv 

▪ Number of deaths 
▪  https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/

csse_covid_19_data/csse_covid_19_time_series/
time_series_covid19_deaths_global.csv



The SIR Model
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▪ S + I + R = N (Total population) 
▪ S(0), I(0), R(0) are initial conditions  

• I(0) is known 
• S(0) is calculated from above 

▪  is the rate of infection 

▪  is the rate of recovery 
▪ The fraction of people who recover is ‘f’ but 

we set that to 1 here 
▪ We have I(t), which is our observation 

▪ Use Bayesian inference to estimate ,  
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The SIR Model Parameters
▪  is the disease transmission coefficient 

▪ This depends on the number of interactions in unit time with infectious people 
▪ This in turn depends on the number of infectious people in the population 
▪  = contact rate x transmission probability 

▪   The force of infection or risk at any time ’t' is defined as  

▪  is the fraction of recovery that happens in unit time 

▪  is hence the mean recovery time 

▪ The ‘basic reproduction number’  is the average number of secondary cases produced by a single primary case 
(Examples https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/) 

▪   (assuming  is close to 1),  > 1 results in proliferation of the disease 

▪ If we vaccinate a fraction ‘p’ of the population to get , we can halt the spread of the disease 
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/


The SIRS Model 
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▪ Most likely a better low-fidelity model 
for COVID-19 

▪ No lifetime immunity from infection 

▪ ,  are the same 

▪  is the rate at which immunity is lost 
and the population moves back to the 
susceptible pool

λ μ
γ

OutlineSIRS Equations



Temporal discretization of SIR
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The DifferentialEquation method in PyMC3

• PyMC3 has an ODE module 
• Use the DifferentialEquation method 

from the ODE module 
• Cons: Tends to be slow 
• Faster: the ‘sunode’ module in PyMC3  

• E.g. 5.4 mins vs 16s for 100 
samples and 100 tuning samples, 
20 time points  

• No U-Turn Sampler (NUTS )is the 
default algorithm, Metropolis (not 
recommended) is faster but less 
accurate



Sunode Module for Solving ODEs

RHS

ODE(IVP)  
   Solver



The Inference Process for an SIR model

▪ Select reasonable priors for the  disease parameters 
▪ Lognormal is a reasonable prior 
▪ Mean parameter should be close to what we expect these parameters to be 

▪ Data likelihood should have high fidelity (domain expertise!) 
▪ Normal distribution 
▪ Lognormal distribution  
▪ Student’s t-distribution 

▪ Get  Susceptible (S) and Infectious (I) numbers from the ODE solver 
▪ Sample for values of 

λ, μ

λ, μ



Inference with PyMC3



Inference Workflow on Databricks

Automate this process on Databricks for a number of 
combination of parameters and priors



Inference with PyMC3

Number of Infections in the US

Sampled distribution (per trace) and trace

                                Posterior with Highest Density Interval



Notes

▪ theano.printing.Print(STRING)(VAR) 
▪ Pass ‘testval’ as a test value to 

stochastic variables 
▪ Model.check_test_point() 
▪ step = pm.Metropolis() for quick 

debugging - rougher posterior but 
much faster 

▪ If the sampling is slow, check your 
prior and likelihood distributions

Debugging your modelSome guidelines

▪ At least 5000 samples and 1000 samples for tuning 
▪ Lambda of 1.5 and mu of 1.5 
▪ Sigma of 2 
▪ Sample from 3 chains at least 
▪ Set ‘target_accept’ to > 0.85  
▪ Sample in parallel with cores=n 
▪ Inspect trace for convergence 
▪ Limited time-samples have an impact on 

inference accuracy 
▪ Normalize your data - large values are not good for 

convergence
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