

Bayesian Modeling of the Temporal Dynamics of COVID-19 using PyMC3

Srijith Rajamohan, Ph.D. Senior Developer Advocate (Data Science)

Agenda

Overview

Compartmental models for COVID-19 The Data The SIR Model

Bayesian Inference for ODEs with PyMC3

Inference Workflow on Databricks

Acknowledgements

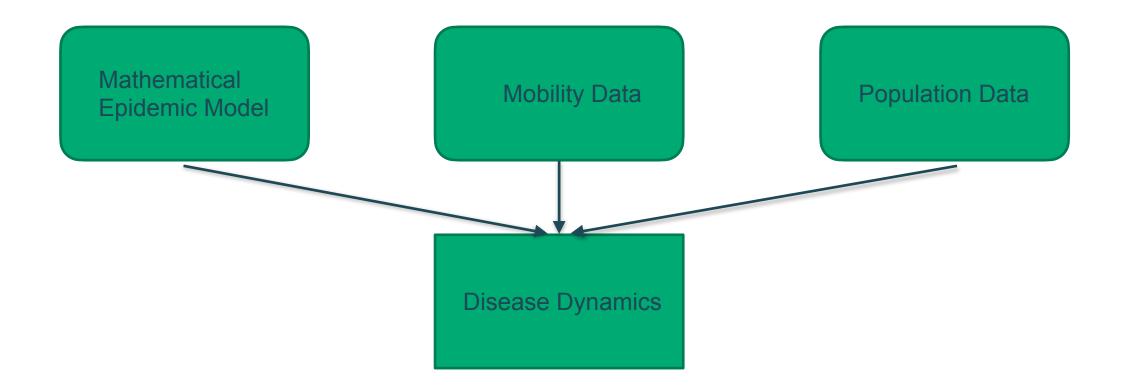
Compartmental Models for Temporal Dynamics

Julia notebook - https://github.com/sjster/Epidemic

- Set of Ordinary Differential Equations (ODEs) for closed populations (no movement)
 - Model Disease propagation in homogeneous compartments
 - Fundamental assumptions may not hold in large populations
 - Vital statistics such as the number of births and deaths may not be included here
- Various compartments depicting stages of disease propagation
 - Susceptible Infected Recovered (SIR)
 - Susceptible Infected Recovered Susceptible (SIRS)
 - Susceptible Exposed Infected Recovered (SEIR)
 - Susceptible Exposed Infected Recovered Dead (SEIRD)
 - SIDARTHE (<u>https://www.nature.com/articles/s41591-020-0883-7</u>)

DATA+AI SUMMIT EUROPE

Real-world Epidemic Modeling (Spatio-Temporal Dynamics)



DATA+AI SUMMIT EUROPE

- GLEAM divides the population into grid cells (25km x 25km)
- Models mobility of people in time steps
 - Global mobility Airports as transportation hubs (Airline traffic data from IATA)
 - Local mobility Short-range commuting of population between urban centers
- Use stochastic mathematical models to characterize the disease
- Make millions of simulations to make predictions

DATA+AI SUMMIT EUROPE

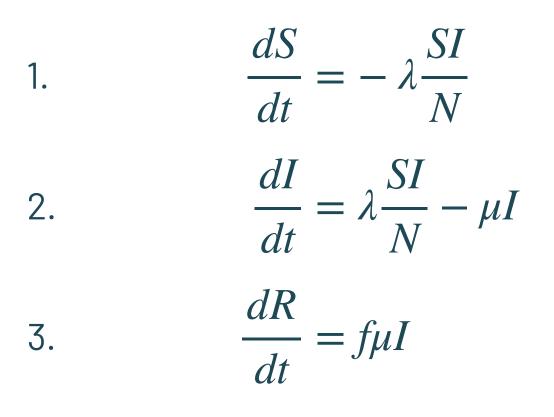
The Data

- Get the COVID case data from the Johns Hopkins University CSSE Github page
 - https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/ csse_covid_19_time_series
- Confirmed cases
 - https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/ csse_covid_19_data/csse_covid_19_time_series/ time_series_covid19_confirmed_global.csv
- Number of deaths
 - https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/ csse_covid_19_data/csse_covid_19_time_series/ time_series_covid19_deaths_global.csv

DATA+AI SUMMIT EUROPE

The SIR Model

SIR Equations



Outline

- S + I + R = N (Total population)
- S(0), I(0), R(0) are initial conditions
 - I(0) is known
 - S(0) is calculated from above
- λ is the rate of infection
- μ is the rate of recovery
- The fraction of people who recover is 'f' but we set that to 1 here
- We have I(t), which is our observation
- Use Bayesian inference to estimate λ , μ

#DataTeams #DataAlSummit

The SIR Model Parameters

- λ is the disease transmission coefficient
 - This depends on the number of interactions in unit time with infectious people
 - This in turn depends on the number of infectious people in the population
 - λ = contact rate x transmission probability
- The force of infection or risk at any time 't' is defined as $\lambda \frac{I_t}{N}$
- μ is the fraction of recovery that happens in unit time
 - μ^{-1} is hence the mean recovery time
- The 'basic reproduction number' R_0 is the average number of secondary cases produced by a single primary case (Examples <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/</u>)

$$R_0 = \frac{\pi}{\mu}$$
 (assuming S_0 is close to 1), $R_0 > 1$ results in proliferation of the disease

• If we vaccinate a fraction 'p' of the population to get $(1 - p)R_0 < 1$, we can halt the spread of the disease

DATA+AI SUMMIT EUROPE

The SIRS Model

SIRS Equations

1.
$$\frac{dS}{dt} = -\lambda \frac{SI}{N} + \gamma R$$

2.
$$\frac{dI}{dt} = \lambda \frac{SI}{N} - \mu I$$

3.
$$\frac{dR}{dt} = \mu I - \gamma R$$

Outline

- Most likely a better low-fidelity model for COVID-19
- No lifetime immunity from infection
- λ , μ are the same
- γ is the rate at which immunity is lost and the population moves back to the susceptible pool

Temporal discretization of SIR

First order discretization

1. $(S_t - S_{t-1})/\Delta t = -\lambda \frac{SI}{N}$ $S_t = (4 - \frac{2\Delta t\lambda I}{N})\frac{S_{t-1}}{3} - \frac{S_{t-2}}{3}$ 2. $(I_t - I_{t-1})/\Delta t = \lambda \frac{SI}{N} - \mu I$ $I_t = (\frac{2\Delta t\lambda S_{t-1}}{N} - 2\Delta t\mu + 4)I_{t-1} - \frac{I_{t-2}}{3}$ 3. $(R_t - R_{t-1})/\Delta t = \mu I$ $R_t = \frac{2\Delta t\mu I_{t-1} + 4R_{t-1} - R_{t-2}}{3}$

Second order discretization

#DataTeams #DataAlSummit

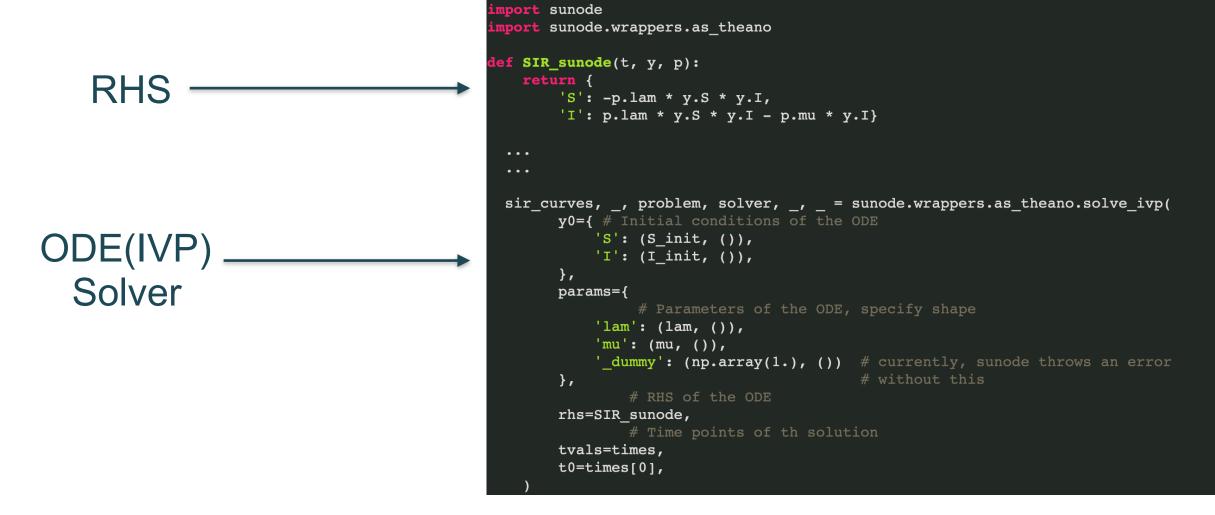
The DifferentialEquation method in PyMC3

- PyMC3 has an ODE module
- Use the DifferentialEquation method from the ODE module
- Cons: Tends to be slow
- Faster: the 'sunode' module in PyMC3
 - E.g. 5.4 mins vs 16s for 100 samples and 100 tuning samples, 20 time points
- No U-Turn Sampler (NUTS) is the default algorithm, Metropolis (not recommended) is faster but less accurate

```
self.sir_model_non_normalized =DifferentialEquation(
func=self.SIR_non_normalized,
times=self.time_range[1:],
n_states=2,
n_theta=2,
t0=0
```

```
def SIR_non_normalized(self, y, t, p):
ds = -p[0] * y[0] * y[1] / self.covid_data. N
di = p[0] * y[0] * y[1] / self.covid_data.N - p[1] * y[1]
return [ds, di]
```

Sunode Module for Solving ODEs



DATA+AI SUMMIT EUROPE

The Inference Process for an SIR model

- Select reasonable priors for the λ, μ disease parameters
 - Lognormal is a reasonable prior
 - Mean parameter should be close to what we expect these parameters to be
- Data likelihood should have high fidelity (domain expertise!)
 - Normal distribution
 - Lognormal distribution
 - Student's t-distribution
- Get Susceptible (S) and Infectious (I) numbers from the ODE solver
- Sample for values of λ, μ

Inference with PyMC3

```
with pm.Model() as model4:
       sigma = pm.HalfCauchy('sigma', self.likelihood['sigma'], shape=1)
       lam = pm.Lognormal('lambda', self.prior['lam'], self.prior['lambda std']) # 1.5, 1.5
       mu = pm.Lognormal('mu', self.prior['mu'], self.prior['mu std'])
                                                                                  # 1.5, 1.5
       res, _, problem, solver, _, _ = sunode.wrappers.as_theano.solve_ivp(
       y0={
            'S': (self.S init, ()), 'I': (self.I init, ()),},
        params={
            'lam': (lam, ()), 'mu': (mu, ()), '_dummy': (np.array(1.), ())},
       rhs=self.SIR sunode,
       tvals=self.time range,
       t0=self.time range[0]
       if(likelihood['distribution'] == 'lognormal'):
            I = pm.Lognormal('I', mu=res['I'], sigma=sigma, observed=self.cases obs scaled)
       elif(likelihood['distribution'] == 'normal'):
            I = pm.Normal('I', mu=res['I'], sigma=sigma, observed=self.cases obs scaled)
       elif(likelihood['distribution'] == 'students-t'):
            I = pm.StudentT( "I", nu=likelihood['nu'],
                                                             # likelihood distribution of the
                   mu=res['I'],
                                  # likelihood distribution mean, these are the predictions
                    sigma=sigma,
                    observed=self.cases obs scaled
       R0 = pm.Deterministic('R0', lam/mu)
        trace = pm.sample(self.n samples, tune=self.n tune, chains=4, cores=4)
       data = az.from pymc3(trace=trace)
```

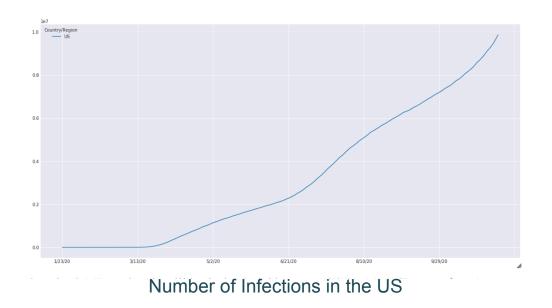
DATA+AI SUMMIT EUROPE

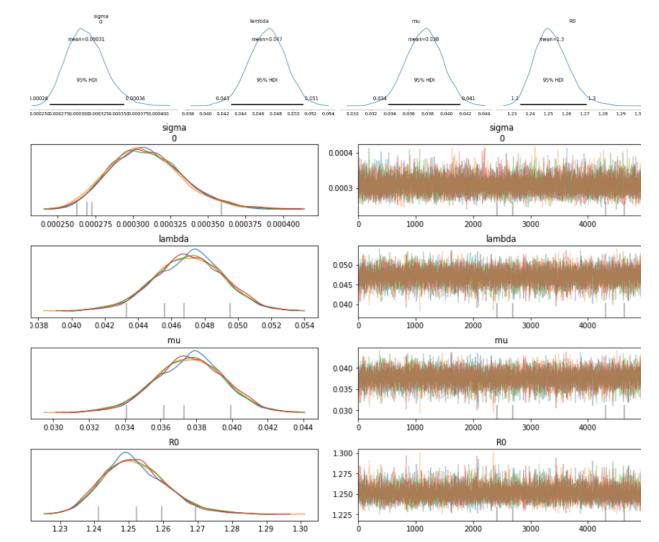
Inference Workflow on Databricks

Automate this process on Databricks for a number of combination of parameters and priors

DATA+AI SUMMIT EUROPE

Inference with PyMC3





Posterior with Highest Density Interval

DATA+AI SUMMIT EUROPE

Notes

Some guidelines

- At least 5000 samples and 1000 samples for tuning
- Lambda of 1.5 and mu of 1.5
- Sigma of 2
- Sample from 3 chains at least
- Set 'target_accept' to > 0.85
- Sample in parallel with cores=n
- Inspect trace for convergence
- Limited time-samples have an impact on inference accuracy
- Normalize your data large values are not good for convergence

Debugging your model

- theano.printing.Print(STRING)(VAR)
- Pass 'testval' as a test value to stochastic variables
- Model.check_test_point()
- step = pm.Metropolis() for quick debugging - rougher posterior but much faster
- If the sampling is slow, check your prior and likelihood distributions

DATA+AI SUMMIT EUROPE

Acknowledgements

- The work by the Priesemann Group
 - https://github.com/Priesemann-Group/covid_bayesian_mcmc
- Demetri Pananos work on the PyMC3 page
 - https://docs.pymc.io/notebooks/ODE_API_introduction.html

Thank you!

DATA+AI SUMMIT EUROPE