
Bayesian Modeling of the Temporal
Dynamics of COVID-19 using PyMC3

Srijith Rajamohan, Ph.D.
Senior Developer Advocate (Data Science)

Agenda

Overview

Compartmental models for COVID-19

The Data

The SIR Model

Bayesian Inference for ODEs with PyMC3

Inference Workflow on Databricks

Acknowledgements

Compartmental Models for Temporal Dynamics

▪ Set of Ordinary Differential Equations (ODEs) for closed populations (no movement)
▪ Model Disease propagation in homogeneous compartments
▪ Fundamental assumptions may not hold in large populations
▪ Vital statistics such as the number of births and deaths may not be included here

▪ Various compartments depicting stages of disease propagation
▪ Susceptible Infected Recovered (SIR)
▪ Susceptible Infected Recovered Susceptible (SIRS)
▪ Susceptible Exposed Infected Recovered (SEIR)
▪ Susceptible Exposed Infected Recovered Dead (SEIRD)
▪ SIDARTHE (https://www.nature.com/articles/s41591-020-0883-7)

Julia notebook - https://github.com/sjster/Epidemic

https://www.nature.com/articles/s41591-020-0883-7

Real-world Epidemic Modeling (Spatio-Temporal Dynamics)

Mathematical
Epidemic Model Mobility Data Population Data

 Disease Dynamics

GLEAM

▪ GLEAM divides the population into grid cells (25km x 25km)
▪ Models mobility of people in time steps
▪ Global mobility - Airports as transportation hubs (Airline traffic data

from IATA)
▪ Local mobility - Short-range commuting of population between

urban centers
▪ Use stochastic mathematical models to characterize the disease
▪ Make millions of simulations to make predictions

The Data

▪ Get the COVID case data from the Johns Hopkins University CSSE Github page
▪ https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/

csse_covid_19_time_series
▪ Confirmed cases

▪ https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/
csse_covid_19_data/csse_covid_19_time_series/
time_series_covid19_confirmed_global.csv

▪ Number of deaths
▪ https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/

csse_covid_19_data/csse_covid_19_time_series/
time_series_covid19_deaths_global.csv

The SIR Model

1.

2.

3.

dS
dt

= − λ
SI
N

dI
dt

= λ
SI
N

− μI

dR
dt

= fμI

▪ S + I + R = N (Total population)
▪ S(0), I(0), R(0) are initial conditions

• I(0) is known
• S(0) is calculated from above

▪ is the rate of infection

▪ is the rate of recovery
▪ The fraction of people who recover is ‘f’ but

we set that to 1 here
▪ We have I(t), which is our observation

▪ Use Bayesian inference to estimate ,

λ
μ

λ μ

OutlineSIR Equations

The SIR Model Parameters
▪ is the disease transmission coefficient

▪ This depends on the number of interactions in unit time with infectious people
▪ This in turn depends on the number of infectious people in the population
▪ = contact rate x transmission probability

▪ The force of infection or risk at any time ’t' is defined as

▪ is the fraction of recovery that happens in unit time

▪ is hence the mean recovery time

▪ The ‘basic reproduction number’ is the average number of secondary cases produced by a single primary case
(Examples https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/)

▪ (assuming is close to 1), > 1 results in proliferation of the disease

▪ If we vaccinate a fraction ‘p’ of the population to get , we can halt the spread of the disease

λ

λ

λ
It

N
μ

μ−1

R0

R0 =
λ
μ

S0 R0

(1 − p)R0 < 1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002118/

The SIRS Model

1.

2.

3.

dS
dt

= − λ
SI
N

+ γR

dI
dt

= λ
SI
N

− μI

dR
dt

= μI − γR

▪ Most likely a better low-fidelity model
for COVID-19

▪ No lifetime immunity from infection

▪ , are the same

▪ is the rate at which immunity is lost
and the population moves back to the
susceptible pool

λ μ
γ

OutlineSIRS Equations

Temporal discretization of SIR

1.

2.

3.

(St − St−1)/Δt = − λ
SI
N

(It − It−1)/Δt = λ
SI
N

− μI

(Rt − Rt−1)/Δt = μI

Second order discretizationFirst order discretization

St = (4 −
2ΔtλI

N
)
St−1

3
−

St−2

3

It = (
2ΔtλSt−1

N
− 2Δtμ + 4)It−1 −

It−2

3

Rt =
2ΔtμIt−1 + 4Rt−1 − Rt−2

3

The DifferentialEquation method in PyMC3

• PyMC3 has an ODE module
• Use the DifferentialEquation method

from the ODE module
• Cons: Tends to be slow
• Faster: the ‘sunode’ module in PyMC3

• E.g. 5.4 mins vs 16s for 100
samples and 100 tuning samples,
20 time points

• No U-Turn Sampler (NUTS)is the
default algorithm, Metropolis (not
recommended) is faster but less
accurate

Sunode Module for Solving ODEs

RHS

ODE(IVP)
 Solver

The Inference Process for an SIR model

▪ Select reasonable priors for the disease parameters
▪ Lognormal is a reasonable prior
▪ Mean parameter should be close to what we expect these parameters to be

▪ Data likelihood should have high fidelity (domain expertise!)
▪ Normal distribution
▪ Lognormal distribution
▪ Student’s t-distribution

▪ Get Susceptible (S) and Infectious (I) numbers from the ODE solver
▪ Sample for values of

λ, μ

λ, μ

Inference with PyMC3

Inference Workflow on Databricks

Automate this process on Databricks for a number of
combination of parameters and priors

Inference with PyMC3

Number of Infections in the US

Sampled distribution (per trace) and trace

 Posterior with Highest Density Interval

Notes

▪ theano.printing.Print(STRING)(VAR)
▪ Pass ‘testval’ as a test value to

stochastic variables
▪ Model.check_test_point()
▪ step = pm.Metropolis() for quick

debugging - rougher posterior but
much faster

▪ If the sampling is slow, check your
prior and likelihood distributions

Debugging your modelSome guidelines

▪ At least 5000 samples and 1000 samples for tuning
▪ Lambda of 1.5 and mu of 1.5
▪ Sigma of 2
▪ Sample from 3 chains at least
▪ Set ‘target_accept’ to > 0.85
▪ Sample in parallel with cores=n
▪ Inspect trace for convergence
▪ Limited time-samples have an impact on

inference accuracy
▪ Normalize your data - large values are not good for

convergence

Acknowledgements

▪ The work by the Priesemann Group
▪ https://github.com/Priesemann-Group/covid_bayesian_mcmc

▪ Demetri Pananos work on the PyMC3 page
▪ https://docs.pymc.io/notebooks/ODE_API_introduction.html

Thank you!

