HPC for Legacy EM Code, a Mixed Language Approach using CUDA

Srijith Rajamohan', Kyle Anderson

Simcenter, Department of Computational Engineering
University of Tennessee at Chattanooga, TN 37405, USA
tny954 @mocs.utc.edu’, kyle-anderson @utc.edu?

Abstract: Integrating CUDA into an existing Fortran framework is investigated and its benefits and
pitfalls are discussed. The suitability of the Graphics Processing Unit (GPU) architecture to an un-
structured finite element EM solver is discussed. Test cases are run with various kernel parameters on
an initial coarse mesh and their resulting runtimes are compared with the corresponding Fortran sub-
routines to examine the acceleration benefits attained by using CUDA. It is then demonstrated using a
larger mesh that the algorithm is scalable, within the limitations of the GPU’s memory.

Keywords: GPU, Computational Electromagnetics, HPC, Fortran, CUDA

1. Introduction

GPU Computing is defined as the use of Graphics Processing Units to perform scientific and engi-
neering work, which by definition implies a hybrid computing model consisting of a GPU and a CPU.
The sequential portion of the application executes on the CPU, which is mostly optimized for non com-
putational tasks such as branching [10] while the computationally intensive sections are dispatched to
the GPU. In the late 1990’s scientists began to adopt Graphics Processing Units (GPUs) for scientific
applications, with particular emphasis in the fields of electromagnetics and medical imaging. How-
ever, because GPUs had initially been designed as dedicated fixed function graphics pipelines, doing
so necessitated mapping the scientific applications to resemble pixel shaders [11].

With support for GPU programming provided by high-level Application Programming Interfaces
(APIs) such as CUDA, it has became possible to use high level languages such as C, C++ and Fortran
for this purpose. CUDA allows the application developer to write device code in C functions known as
kernels. A kernel differs from a regular function in that it is executed by many GPU threads in a Single-
Instruction Multiple Data (SIMD) fashion. Several mainstream applications such as Adobe Photoshop,
Mathworks Matlab, Wolfram Mathematica, and NI Labview routinely exploit the advantages of the
GPU’s computing capabilities.

While variations of C and Fortran are commonly used for scientific applications, many of the codes
in use today have been developed over a period of many years and are not structured appropriately to
benefit from GPU programming. Among these codes, there is an abundance of scientific legacy code
written in Fortran [1], which continues to be the language of choice for high performance scientific
applications [13]. As mentioned previously, with the evolution of cost effective hardware accelerators
[11] it has become easier to pursue increasingly complex applications without resorting to supercom-
puting resources. CUDA is one of the more popular approaches, although active development is also
being pursued using OpenCL [2], DirectCompute [3], X10 [4], and FPGAs [15]. This last option de-
serves special mention as it is a hardware solution and although it can be quite flexible, its use often
results in greater-than-average turn-around time [11].

For the current work, CUDA has been chosen because of its widespread acceptance, ready avail-
ability, and the fact that its use and performance is well documented in the open literature. Currently
the only CUDA version provided by Nvidia requires a kernel written in C/C++ (although there are
other commercial versions available). Therefore, one of two options must be chosen for using CUDA
with Fortran codes. In the first option, the entire code is ported to C/C++ and then accelerated using

CUDA. A more efficient development path is to profile the code and determine processor-intensive
routines that are then ported to a CUDA kernel in C/C++ for acceleration. In this work the second ap-
proach has been adopted because porting the entire code is not always pragmatic or even desirable [13].

2. Finite Element Discretization

The time dependent Maxwell’s curl equations [5] are given by

0B
VxE=—" (1)
oD
V-B=0 3)
V-D=pc 4)

where E and H are electric and magnetic field intensities whereas D and B are electric and magnetic
flux densities which will be the fundamental variables in this formulation. This can be written in a
divergence form given by

0Q B
5 TV F@=0 (5)

where Q is the list of electric (D) and magnetic (B) flux densities

Q: (nyDyaDszﬂcaByaBz) (6)

The solution to the governing equations is obtained using a Petrov Galerkin scheme, which is a weighted
residual method and it can be written in the following form

///{2[¢]<?9?+V-F(Q)>dﬂzo (7)

where ¢ is a weight function given as

61 = N1+ (G 141+ S (8] + 5101) ®)
where

Here N; represents a basis function, ¢; is an arbitrary constant, and [A], [B], [C] are flux Jacobian
matrices. The 7 matrix is given as

n

ON A ON ON

[~ = %[]‘*‘Ty[B]‘f‘E

k=1

(€] (10)

3. Implementation

An EM solver presents ample opportunities for parallelization as the mesh elements can be spatially
partitioned and allocated to the compute resources. Because a finite element code tends to be quite
cumbersome compared to its alternative, the FDTD method, there exists opportunities and hurdles for
a CUDA implementation. However adapting an unstructured solver to take advantage of the GPU ar-
chitecture can be challenging because no predetermined memory access pattern exists for the nodes
that make up the unstructured mesh. In accordance with Amdahl’s law the code is profiled to deter-
mine the most time intensive subroutines that can benefit from acceleration. As a result, the residual
calculation has been determined to dominate the solver runtime implying that high priority is placed on
porting these calculations to the GPU. These routines have consequently been rewritten in C to execute
as a kernel on the GPU. Because the majority of the code is written in Fortran, wrapper code has been
developed to provide the interface with the CUDA kernel. This involves an additional data transfer,
copying from Fortran code to C wrapper and from there to the kernel. Compatible data structures are
created in C for the purpose of message passing from Fortran. Every effort has been made to maintain
flexibility in the code and make it as generic as possible.

Mesh associated parameters that are read only are stored in shared memory, however the residuals
are stored in global memory. Access conflicts for a node residual can result in delays that can severely
affect performance. There are two ways to deal with this problem. One option involves renumbering
the nodes to minimize conflicts between threads, although this still does not eliminate contention at
nodes shared by different threads. This method uses atomic operations to ensure thread safe operation,
but it is an operation that can severely affect performance. In the second method, memory locations
for the residual are allocated for the nodes associated with each mesh element assigned to a thread,
regardless of whether or not the same node is accessed in another thread. Each thread writes it’s
residual contribution to a separate memory location associated with a node and the final residual at
each node is accumulated using a reduction operator across the threads. This comes at the price of
increased memory usage, however all memory accesses are uncontested. As a result peak performance
can be obtained as long as there is sufficient memory in the GPU global memory to hold the duplicated
residual contributions. The second approach is chosen in this work to minimize access delays.

The residual computation for this kernel is distributed approximately equally over the blocks to
maximize the occupancy of each block. It must be pointed out that determining the ideal load conditions
is not a trivial task as this usually involves finding the right balance between the number of blocks,
threads and nodes per thread. Although there are hard limits on most of these parameters, identifying
the optimal set of parameters is often dependent on the solver. This is a result of the fact that each
application tends to have differing memory access patterns, memory usage, processing needs etc. It is
noted that, for this study both the baseline Fortran code and CUDA enabled version use single precision
arithmetic.

In the flowchart in Fig.1 the boxes in yellow are code sections that are relevant to the porting. Before
the beginning of the iteration data related to the mesh is copied from the main memory space to the GPU
memory space. In this implementation only the residual routines are ported onto the GPU. The green
boxes indicate Fortran code sections or routines whose function is to pack data into data structures that
can be passed to C wrapper code. The blue boxes are C wrapper code routines that receives packed
data from Fortran. The yellow boxes represent CUDA kernels that are invoked from the C wrapper.
The boxes in orange can be implemented in a similar fashion, however this is left for future work.

CUDA needs to be initialized with a call from the Fortran solver code to a dummy C function, since
the first CUDA invocation incurs a startup initialization overhead. This overhead is proportional to the
size of the data allocated, hence a large memory allocation can slow down code execution. From the
Fortran code, in the driver routine the function ’initcuda’ is called to initialize CUDA. This subroutine
makes a single memory allocation for a single integer, which also implicitly initializes the GPU.

The solver parameters are copied from the global memory to shared memory variables. Global
memory has a latency of about 400 to 800 cycles [9], depending on the instruction, while the shared

Read Mesh and Input
data (Solver run

Partition data for
each GPU Block.
Copy persistent
mesh information

Driver code

parameters and material
properties)

Compute LHS matrix for
Petrov Galerkin

to GPU memory

memory for data structures)

Compute LHS Compute LHS
matrix for matrix for

. ; interior mesh boundary mesh
Pri;:ziess:t‘ rLg ?far:’l‘:cs:l:”d Pack data structures in elements elements
P fortran and pass to C (Orange) (Orange)

wrapper (Green)

Pack updated solver
variables and call C
wrapper (Green)

Time stepping

Apply Boundary conditions to
boundary nodes and edges and
calculate contribution to
residual (Yellow)

Compute residual or the RHS
of linear system

Partition data for each GPU
Block. Send updated solver
info to GPU (Blue)

Block N Kernel
Calculate residual
in the GPU over the
subdomain (Yellow)

Solve the linear system
(GMRES) and update
the solver variables.

Accumulate Fourier
transforms to calculate S
parameters

Residual
tolerance

Compute S

parameters.

Figure 1: Proposed algorithm.

memory is on-chip and has a latency of about 20 cycles. Considering that these parameters will be
repeatedly accessed in an iteration loop, significant performance improvements can be achieved by
doing so. To maintain data integrity and to provide synchronization only the first thread makes the data
copy. Since this resides in shared memory space, all the threads within the block have access to these
variables. A "syncthread" command is then issued to ensure data integrity, since the order in which the
threads are spawned is indeterminate and threads within a block have no other synchronization method.

The code snippet below displays how this is accomplished.

shared, iter_info_common info_device;

if (threadIdx.x

{

info_device.stepNo info—>stepNo;

info_device.timeAccuracy info—>timeAccuracy;

info_device.irestart info—>irestart;

info_device.ngauss info—>ngauss;

info_device.elementType info—>elementType;

info_device.ng info—>nqg;

conditionl (info—>stepNo >= 3 && info—>timeAccuracy == 2)
info—>timeAccuracy == 2);

0)

}
__syncthreads() ;

(info—>irestart == 1 &&

4. Results

The implementation has been tested on a single GTX470 desktop graphics card from Nvidia using a
CUDA compute capability version 2.0 and a CUDA runtime driver version 3.20. The results obtained
using the GPU are compared to those obtained using the original code and the GPU results are found
to be of sufficient accuracy. The graphics card has 14 multiprocessors(clocked at 1.22Ghz), each com-
prising 32 cores for a total of 448 cores. Wall clock times are recorded during each run for both the
original Fortran version and for the code ported to the GPU.

The figure below compares the execution on Fortran with a GPU implementation using a 2930 node
tetrahedral mesh.

Total Blocks Threads per | Mesh per Kernel Fortran
threads block element execution time | execution
time

800 25 32 140 0.679496 3.249844
1600 25 64 70 0.383718 3.250823
1600 50 32 70 0.617468 3.269889
3200 50 64 35 0.620021 3.256026
3200 25 128 35 0.404993 3.300707
2560 20 128 40 0.279704 3.255644
5120 20 256 20 0.301782 3.250507
6400 50 128 18 0.617136 3.25056

Figure 2: Runtime statistics of Fortran code vs CUDA kernel.

It can be seen from the figure that load balancing is key to performance on the GPU. In the Fermi
architecture each Streaming Processor can have up to 8 active blocks and 48 active warps (or 1536
active threads). The maximum number of threads per block is 1024 and the warp size is 32. Ideally
at least 128 threads are recommended for optimum performance, however increasing the number of
threads per block decreases the number of mesh elements proportionately; as a result the blocks are
not fully utilized. Blocks have an associated context-switch cost as a result of having to save registers
and shared memory, hence increasing block size indiscriminately will, in fact, slow down execution.
Threads in a single block are executed on a single multiprocessor hence large block sizes can cause
shared memory (software-managed data cache) register spillage, which causes some rather unfortunate
results. Specifically there is no determinate means to ensure that arrays assigned to shared memory
will necessarily reside there, those that are deemed too large are moved into the global memory which
can result in severe performance degradation. Inspection of the generated ptx file is recommended to
ensure that such an event has not occurred.

Table 1 compares average execution times of Fortran code and CUDA kernel (optimal parameters and
load conditions) for two different meshes to ensure scalability. Note that the CUDA runtimes include
memory transfers to the wrapper and the CUDA kernel since this metric provides a more realistic
estimate of achievable runtimes in real world applications. Runtimes for the larger mesh indicate that
the algorithm scales well with the increased load. In fact the speedup increased from a factor of 9 for
the smaller mesh to slightly over 11 for the larger mesh, which is consistent with the notion that GPU
startup overhead and data transfer latencies are amortized by larger workloads. The size of the mesh
that can be used is only limited by the GPU local memory, which in this case is 1.2 GB.

Table 1: Average execution times

Mesh Fortran execution time | CUDA Kernel Execution time
Unstructured mesh with 2930 nodes 0.45s 0.05s

and 14181 tetrahedron elements

Unstructured mesh with 18676 nodes 3.25s 0.28s

and 99428 tetrahedron elements

5. Conclusion

CUDA kernels have been integrated into a Fortran code for a FEM EM solver and an 11x speedup
over the corresponding Fortran subroutine has been obtained. It is shown that the CUDA API can
be utilized to augment a Fortran electromagnetic solver through selective acceleration of code using
Amdahl’s law. Future work entails investigating a double precision code as well as an MPI Fortran
framework with CUDA acceleration for scalable heterogeneous computing.

References

[1] http://www.fortran.com/tools.html
[2] http://www.khronos.org/opencl/
[3] http://developer.nvidia.com/directcompute
[4] http://x10—lang.org/home.html
[5] W.K. Anderson et al., "Petrov-Galerkin and discontinuous-Galerkin methods for time-domain and
frequency-domain electromagnetic simulations"”, J. Comput. Phys., Vol 230 Issue 23,
pp 8360-8385, 2011
[6] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media", IEEE Trans. Anten. Propag. 14, pp 302-307, 1966
[7] J.S. Shang, R.M. Fithen, "A comparative study of characteristic-based algorithms for the Maxwell
equations", J. Comput. Phys. 125, pp 378-394, 1996
[8] C. Fumeaux, D. Baumann, R. Vahldieck, "Advanced FVTD simulation of dielectric resonator
antennas and feed structures”, Appl. Comput. Electromagn., Vol 19, pp 155-164, 2004
[9] Nvidia CUDA Programming Guide, http://developer.nvidia.com/cuda-toolkit-41
[10] D.D. Donno, A.Esposito, L.Tarricone and L.Catarinucci, "Introduction to GPU Computing and
CUDA Programming: A Case Study on FDTD, IEEE Antennas and Propagation Magazine", Vol.
52, No.3, June 2010
[11] R.Weber, A.Gothandaraman, R.J. Hinde, and G.D. Peterson, "Comparing Hardware Accelerators
in Scientific Applications: A Case Study", IEEE Transactions on Parallel and Distributed Systems,
Vol. 22, p58-68, Jan 2011
[12] W.B. Langdon, Simon Harding, "Performing with CUDA", CIGPU 2011 workshop, p423-430,
2011
[13] V.K. Decyk, C.D Norton, H.J Gardner, "Why Fortran, Computing in Science and Engineering",
Vol 9, Issue: 4, p68-71, 2007
[14] M.Ujaldon, "Using GPU’s for accelerating electromagnetic simulations", ACES Journal, Vol 25,
No 4, April 2010
[15] K.Compton, S Hauck, "An introduction to Reconfigurable Computing", April 2000

