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Questions for Scalable ML
▪ Track the provenance and reason for model creation
▪ What training data was used, if any?

▪ Proprietary data, sensitive data, storage, data retention period?
▪ Real-time or batch?

▪ How are the models being used and who is using it?
▪ Exploratory analysis and production environment?

▪ Is model performance being measured regularly and is the model being updated?
▪ Is the model well documented to ensure reuse?
▪ Is the model deployment process being automated?
▪ Institutional adoption and support



Best Practices for ML
▪ Software engineering practices

▪ Code quality best practices
▪ Validate your data

▪ Ensure proper data types and format are fed to your model (Schema validation)
▪ Ensure no data drift, can render a supervised model ineffective 

▪ Version and track your experiments like code!
▪ Changing hyperparameters, inputs, code etc. 

▪ Monitor predictive performance over time
▪ Ensure model performance does not degrade over time
▪ Ensure model fairness across different classes of data (bias)

 



MLOps = ML + DataOps + DevOps

Build -> Test -> Deploy -> Monitor -> Feedback -> Build  

What is MLOps?

Model management



Databricks Ecosystem for ML/DL
▪ Integrated Environment

▪ Use compute instances from AWS, Azure or GCP
▪ Centered around a notebook environment

▪ Version control them with GitHub
▪ Integrated ‘DBFS’ filesystem that can mount cloud filesystems like S3
▪ Mix SQL, Python, R and Bash in the same notebook 
▪ Schedule jobs to run anytime

▪ Databricks Runtimes (DBRs)
▪ Preinstalled with packages for ML/DL
▪ Additional packages can be installed per cluster or per notebook

▪ MLflow integrated into the Databricks platform
▪ Model tracking for experiment management/reproducibility
▪ MLflow projects for packaging an experiment
▪ Model serving with MLflow
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The Data Preparation



The Delta Lake Architecture



Data Store and Versioning

▪ Scalable metadata
▪ Time travel
▪ Open format
▪ Unified Batch and Streaming
▪ Schema enforcement

Delta Lake

▪ Data stored needs to be transformed 
into features to be useful

▪ Feature tables are Delta tables
▪ Feature Stores can save these features

▪ Discoverable and reusable across an 
organization

▪ Ensures consistency for Data Engineers, 
Data Scientists and ML Engineers

▪ Track feature lineage in a model

Feature Store



ETL and EDA
▪ Delta lake 

▪ Save data in scalable file formats like Parquet
▪ Delta file formats can let you version control your data

▪ ETL 
▪ Read data

▪ PySpark - Ideal for large data
▪ Tensorflow (tf.data) and Pytorch (DataLoader)

▪ Clean and process data
▪ PySpark/Pandas API on Spark can work with large datasets across clusters
▪ Clean and prepare the data
▪ Extract features and save them using Feature Stores

▪ EDA
▪ Preliminary data analysis such as inspecting records, summary statistics
▪ Visualize the data and its distribution

 



The Model Build



Model training
▪ DBRs provide your favorite DL frameworks such as Tensorflow, Pytorch, 

Keras etc.  
▪ Integration with MLflow for model tracking
▪ Hyperparameter tuning with Hyperopt/Optuna
▪ Seamlessly run single node but multi-CPU/multi-GPU jobs
▪ Distributed training on multiple nodes with Horovod

▪ NVlink/NCCL enabled instances available for accelerating DL workloads
▪ Tightly coupled - Train directly on Spark Dataframes with Horovod Estimator
▪ Train on distributed Spark clusters with Horovod Runner



Distributed Training with Spark/Horovod



Distributed Training with Spark/Horovod contd...
Invoke training across multiple nodes

Inference using Horovod



Distributed Training

▪ Data is divided among the different 
nodes 
▪ Entire model is copied to all the nodes

▪ Gradients are communicated back to 
all other nodes to update the model
▪ Synchronous or asynchronous updates

▪ Model size is a concern 

Data parallelism

▪ Model is divided among all the nodes
▪ Only works if you can take advantage of 

task parallelism in the model
▪ Model size is less of a concern

Model parallelism



Deep Learning Synchronization

▪ Central servers hold all shared 
parameters

▪ Workers receive updates from the 
central server

▪ Harder to scale
▪ Speedup now depends on the overhead 

of communication with the central 
server

Model parameter server

▪ All the machines store the shared 
parameters 

▪ No central server
▪ Several architectures for this

▪ Ring All-reduce
▪ Tree All-reduce

All-reduce



Other Topics in Training

▪ Quantization-aware training
▪ Lower-precision training to minimize memory/compute requirements

▪ Federated learning 
▪ Decentralized learning with the Federated Averaging algorithm (Google)
▪ Keep data on device
▪ Model is updated with data on device and updates sent back to central server 
▪ Updates from all devices are averaged

▪ Privacy-preserving learning
▪ Learn from data that is encrypted or with minimal exposure to the data



Model tracking with  MLflow

▪ The MLflow Tracking API
▪ Integrations with common ML/DL tools such as Scikit-learn, Pytorch, 

Tensorflow, Spark etc.
▪ Logs metrics and artifacts (output files)

▪ Can log this locally or a remote tracking server
▪ Tracking UI to query runs and visualize the results of a run
▪ Save and load models from a run



Model tracking with  MLflow - Keras 



Model tracking with  MLflow - Autolog

With many of the popular libraries, 
you can use the autologging feature



AutoML

▪ Only ML algorithms for now
▪ Works with 9.1 LTS ML DBRs and above
▪ Classification and Regression

▪ Decision trees, Random Forests, Logistic Regression, XGBoost, LightGBM
▪ Forecasting with Prophet
▪ Run from the UI or use the command line API



AutoML



AutoML contd...



AutoML - Load the best model



AutoML - Experiments



The Model Inference and Deployment



Model Inference - Pandas UDF 

▪ Use a compiled DL model with Pandas UDF for distributed inference
▪ Scalar pandas UDF (batch of data)  vs. Iterator pandas UDF (iterator of 

batches ) here so model is no initialized for every batch



Model Packaging with MLflow Projects

MLProject file for 
reproducible executions

File under folder 
sklearn_elasticnet_wine

Execute this project using 
the command below

mlflow run sklearn_elasticnet_wine -P alpha=0.42



Model Serve with MLflow

curl -X POST -H "Content-Type:application/json; format=pandas-split" 

--data '{"columns":["alcohol", "chlorides", "citric acid", 

],"data":[[12.8, 0.029, 0.48]]}' http://127.0.0.1:1234/invocations

mlflow models serve -m 

/Users/mlflow/mlflow-prototype/mlruns/0/7c1a0d5c42844dcdb8f5191146925

174/artifacts/model -p 1234

Serve the model

Send a request



Thank you!


