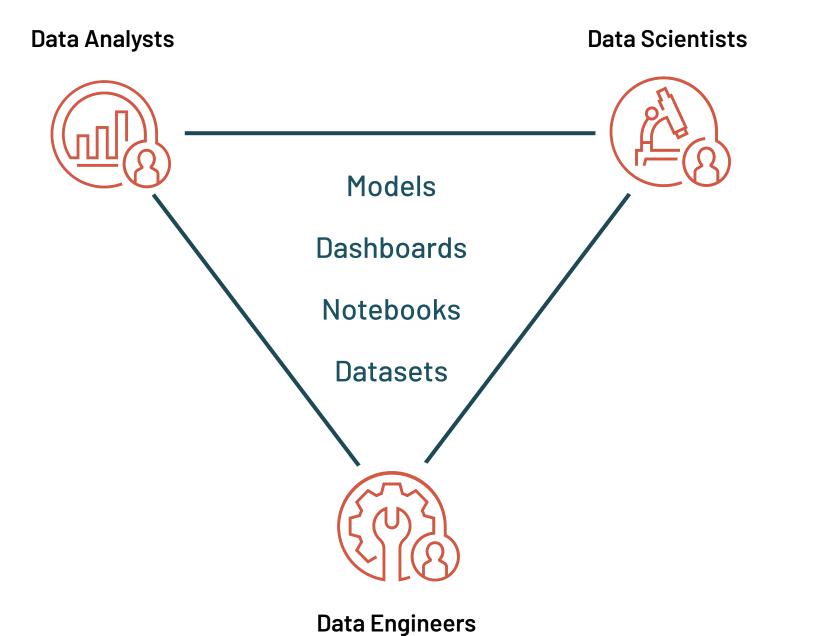
Deep Learning with Databricks

Srijith Rajamohan, Ph.D. John O'Dwyer



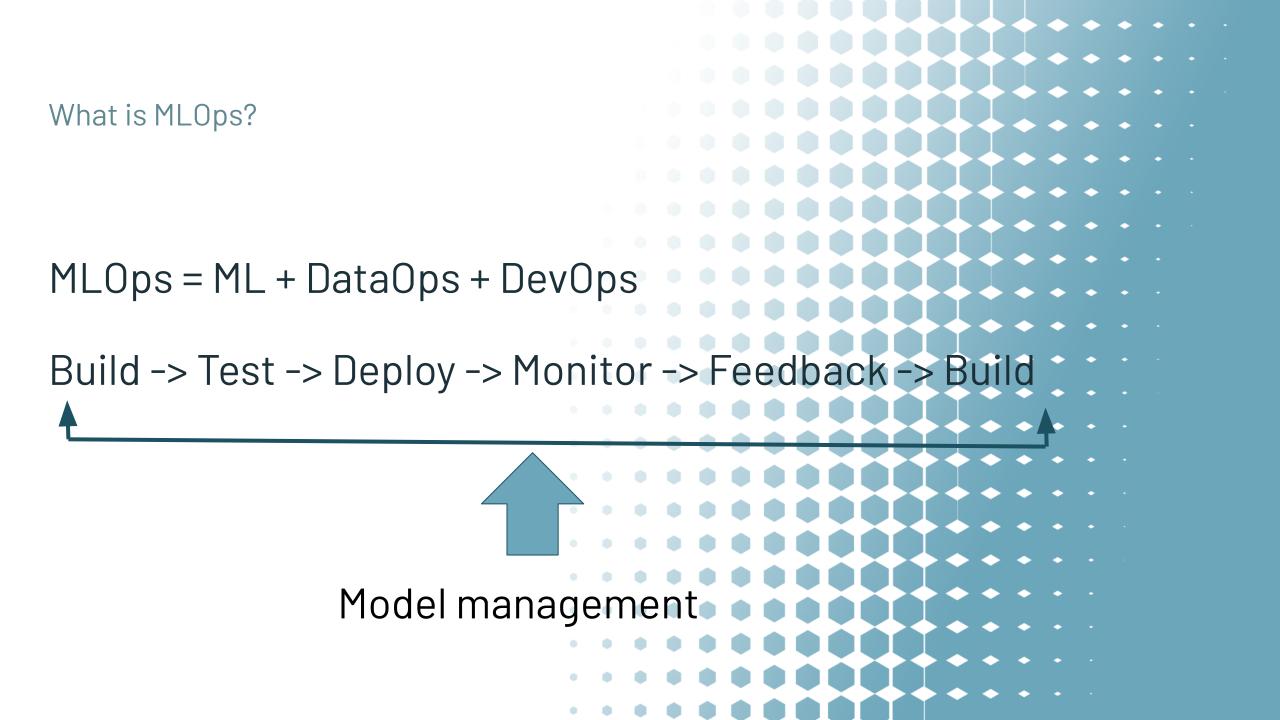
Open

Unify your data ecosystem with open source, standards and formats

Built on the innovation of some of the most successful open source data projects in the world

i **⇔ databricks**

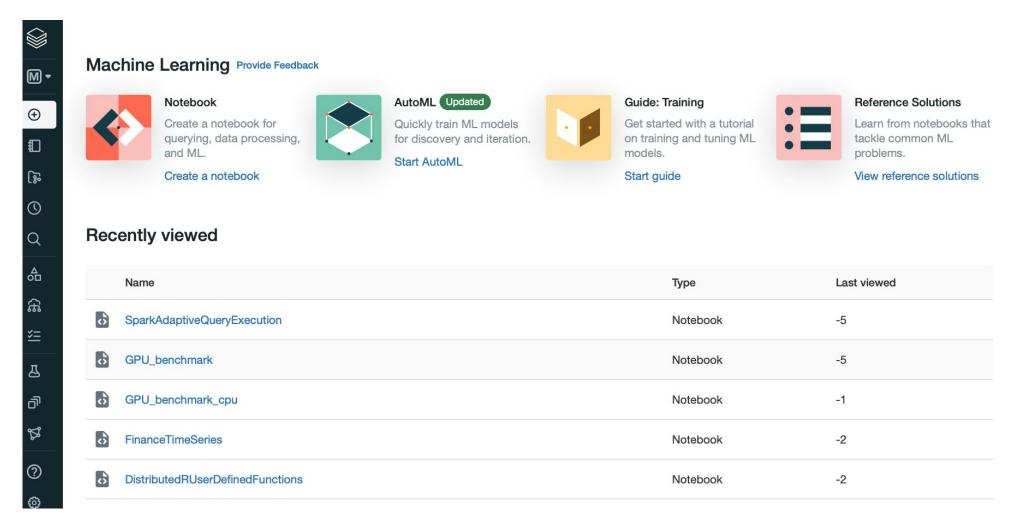
Collaborative

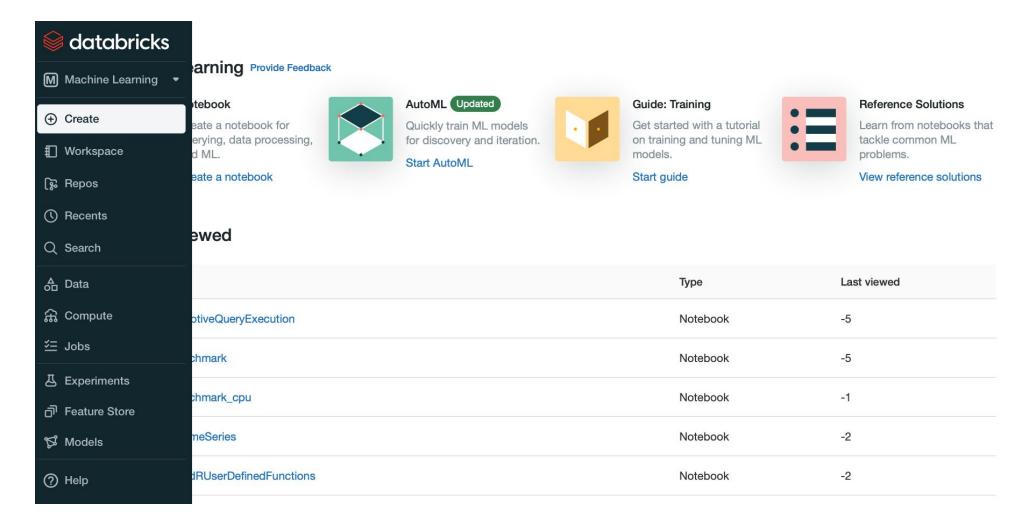

Unify your data teams to collaborate across the entire data and Al workflow

Questions for Scalable ML

- Track the provenance and reason for model creation
- What training data was used, if any?
 - Proprietary data, sensitive data, storage, data retention period?
 - Real-time or batch?
- How are the models being used and who is using it?
 - Exploratory analysis and production environment?
- Is model performance being measured regularly and is the model being updated?
- Is the model well documented to ensure reuse?
- Is the model deployment process being automated?
- Institutional adoption and support

Best Practices for ML


- Software engineering practices
 - Code quality best practices
- Validate your data
 - Ensure proper data types and format are fed to your model (Schema validation)
 - Ensure no data drift, can render a supervised model ineffective
- Version and track your experiments like code!
 - Changing hyperparameters, inputs, code etc.
- Monitor predictive performance over time
 - Ensure model performance does not degrade over time
 - Ensure model fairness across different classes of data (bias)


Databricks Ecosystem for ML/DL

- Integrated Environment
 - Use compute instances from AWS, Azure or GCP
 - Centered around a notebook environment
 - Version control them with GitHub
 - Integrated 'DBFS' filesystem that can mount cloud filesystems like S3
 - Mix SQL, Python, R and Bash in the same notebook
 - Schedule jobs to run anytime
- Databricks Runtimes (DBRs)
 - Preinstalled with packages for ML/DL
 - Additional packages can be installed per cluster or per notebook
- MLflow integrated into the Databricks platform
 - Model tracking for experiment management/reproducibility
 - MLflow projects for packaging an experiment
 - Model serving with MLflow

Workspace

Workspace

i **⇔ databricks**

Notebooks

	GPU_benchmark Python	0	Sch	edule ~	•
M •	test_g4dn IV È▼ E▼ A O Ø▼		2	₫	9
(Using the Huggingface Transformer in Pytorch				
_] ج ی	Cmd 13 from transformers import AutoTokenizer, AutoModelForSequenceClassification from torch import nn		▶ ▼	v -	¢
Q	<pre>model_name = "distilbert-base-uncased-finetuned-sst-2-english" pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)</pre>				
Â	<pre>tokenizer = AutoTokenizer.from_pretrained(model_name) pt_batch = tokenizer(</pre>				
四 二 二 日	<pre>["We are very happy to show you the it Transformers library.", "We hope you don't hate it."], padding=True, truncation=True, max_length=512, return_tensors="pt")</pre>				
ר ק	<pre>pt_outputs = pt_model(**pt_batch) pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=1) pt_predictions</pre>				
0	Downloading: 0% 0.00/629 [00:00 , ?B/S]<br Downloading: 0% 0.00/255M [00:00 , ?B/S]<br Downloading: 0% 0.00/48.0 [00:00 , ?B/S]<br Downloading: 0% 0.00/226k [00:00 , ?B/S]<br Out[8]: tensor([[2.2043e-04, 9.9978e-01], [5.3086e-01, 4.6914e-01]], grad_fn= <softmaxbackward>)</softmaxbackward>				
<u>م</u>	Command took 18.57 seconds by srijith.rajamohan@databricks.com at 10/21/2021, 3:31:37 PM on test_g4dn				

Job scheduling

	Jobs	5							
D -	Jobs	B Delta Live Tables Preview							
÷	Cr	eate Job				Owned by me Accessit	ble by me	lter	
₽		Name 🛧	Job ID	Created by	Task	Cluster	Schedule	Last Run	Actions
જી	•	ContinuousEventTimeAggreg	1425029	srijith.rajamohan	ContinuousEventTimeAggrega	1 worker: i3.xlarge 9.1 LTS (includes Apache Spark 3.1.	None	Succeeded	► ×
ତ ପ	٠	DistributedRUserDefinedFun	1425078	srijith.rajamohan	DistributedRUserDefinedFuncti	1 worker: i3.xlarge 9.1 LTS (includes Apache Spark 3.1.	None	Succeeded	►×
 	•	FinanceTimeSeries	1424769	srijith.rajamohan	FinanceTimeSeries	1 worker: i3.xlarge 9.1 LTS ML (includes Apache Spark	None	Succeeded	► ×
â	•	GettingStartedWithSparkMLlib	1424816	srijith.rajamohan	GettingStartedWithSparkMLlib	1 worker: i3.xlarge 9.1 LTS ML (includes Apache Spark	None	Succeeded	► ×
¥E	•	GPU benchmarking c4.8x	1413109	srijith.rajamohan	GPU_benchmark_cpu	1 worker: c4.8xlarge 9.1 LTS ML (includes Apache Spark	None	Failed	► ×
?	•	GPU benchmarking c5.12x	1412996	srijith.rajamohan	GPU_benchmark_cpu	1 worker: c5.12xlarge 9.1 LTS ML (includes Apache Spark	None	Succeeded	► ×
0	•	GPU benchmarking c5.24x	1412924	srijith.rajamohan	GPU_benchmark_cpu	1 worker: c5.24xlarge 9.1 LTS ML (includes Apache Spark	None	Succeeded	► ×
<u>د</u>	•	GPU benchmarking g4dn.12x	1411567	srijith.rajamohan	GPU_benchmark	1 worker: g4dn.12xlarge 9.1 LTS ML (includes Apache Spark	None	Succeeded	► ×
	-					1 worker: q4dn.16xlarge	••	~ · ·	×

i **⇔** databricks

Job page

	Jobs / Spark	AdaptiveQueryExe	ecution						
D•	Spark	Adaptiv	veQuery	Execut	tion				More 🚥 Run Now 🗸
•	Runs Tasks						>	Job details	
	Active Runs						C Refresh		1425152 🖓
ૢૢૢૢૢ	Run	Start Time	Run ID	Launched	Duration	Spark	Status		srijith.rajamohan@databricks.com
\bigcirc	Run Now / Run M	Now With Different F	Parameters					Run As 😧	srijith.rajamohan@databricks.com
Q						0-0 < >	20 🗘 / Page	Schedule	
		Ins (past 60 da Run (Refreshes Au					C Refresh		y 1, 8, 15, 22, and 29 of the month fic Time (US and Canada); Tijuana)
	Run	Start Time	Run ID	Launched	Duration	Spark	Status	Edit schedule	Pause
ஊ	View Details	Oct 22 2021,	4277684	Manually	13m 34s	Spark UI / Log	Succeeded		
	View Details	Oct 22 2021,	4277618	Manually	0s	Spark UI / Log	Skipped - De	Clusters	
?	View Details	Oct 22 2021,	4277566	Manually	12m 57s	Spark UI / Log	Cancelled	SparkAdaptiveQue	
0	View Details	Oct 22 2021,	4277505	By retry sche	1m 58s	Spark UI / Log	Failed - Delete	0	prkers: i3.xlarge, 1 worker, On-Demand, pache Spark 3.1.2, Scala 2.12)
ዶ	View Details	Oct 22 2021,	4277406	Manually	4m 42s	Spark UI / Log	Failed - Delete		Change
						1 - 5 < >	20 🗘 / Page		ypes by editing individual tasks.

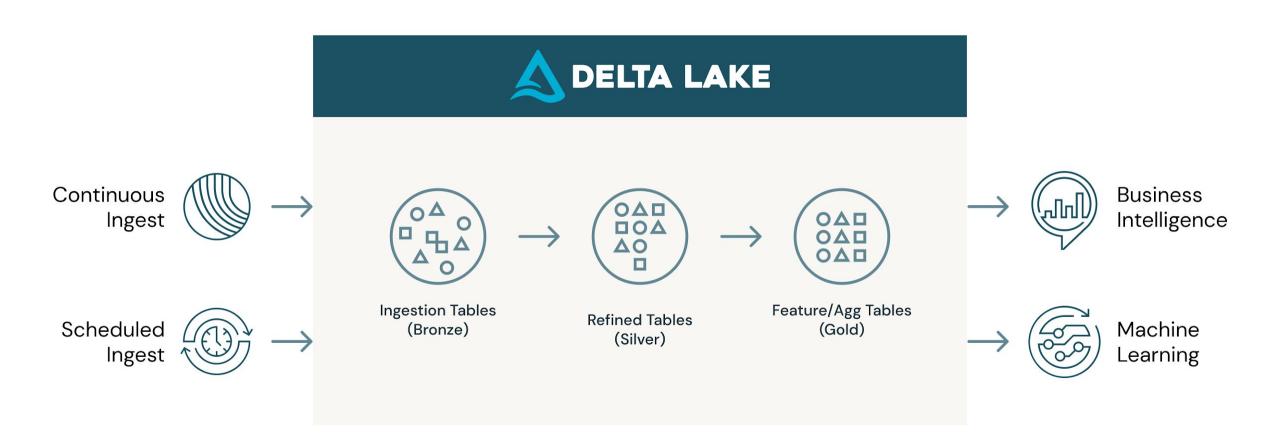
i **⇔** databricks

Experiments

Experiments Preview Provide Feedback											
Create AutoML Experiment		Owned by me Accessi		ble by me	Q Search	experiments	riments				
Name 🍦	Location 🜲			Last Modified	\$	Created by \Rightarrow	Notes				
Test2	/Users/srijith.rajamohan@d	2021-10-22 12:07:08 EDT srijith.rajamohan@data			a						
flight_school_assignment / 🗎	/Shared/flight-school-apj_c	2021-10-21 03:03:19 EDT junichi.maruyama@dat			at						
flight_school_assignment / 🖹	/Shared/flight-school-team	y-1/fli	2021-10-20 1	8:00:10 EDT	alex.lopes@databrick	S					
ProdModeling /	/Repos/sean.owen@datab	ricks.com/dais-202	1-chur	2021-10-20 1	7:21:54 EDT	sean.owen@databric	<s< td=""><td></td></s<>				
existing_run / 🖹	/Users/andre.mesarovic@c	latabricks.com/wor	k/exist…	2021-10-20 1	5:59:11 EDT	andre.mesarovic@dat	ta				
_model_wrapper /	/Users/marijse.vandenberg	@databricks.com/l	Experi	2021-10-20 0	6:03:46 EDT	marijse.vandenberg@	d				
Churn_demographic_service-20	/Users/sean.owen@databr	icks.com/databrick	s_auto	2021-10-19 2	3:56:49 EDT	sean.owen@databric	<s< td=""><td></td></s<>				
Churn_demographic-2021_10_1	/Users/sean.owen@databr	icks.com/databrick	s_auto	2021-10-19 2	3:25:35 EDT	sean.owen@databric	<s< td=""><td></td></s<>				
Setup / 🖹	/Repos/sean.owen@datab	ricks.com/dais-202	1-chur	2021-10-19 2	2:06:01 EDT	sean.owen@databric	<s< td=""><td></td></s<>				
AutomatedTest /	/Repos/sean.owen@datab	ricks.com/dais-202	1-chur	2021-10-19 2	2:05:37 EDT	sean.owen@databricl	<s< td=""><td></td></s<>				

Registered models

Registered Models


Share and serve machine learning models. Learn more											
Create Model			rch by model name	Search = Filter							
Name 🔶	Latest Version	Staging	Production	Last Modified 🍦	Tags	Serving 😰					
1_sri_bad_loan_model	Version 13	Version 11	Version 8	2021-10-19 16:32:11	-	-					
andre_02_Sklearn_Train_Predict_Imported_05	Version 1	-	-	2021-08-10 14:38:07	-	-					
gartner_2020	Version 33	Version 31	Version 30	2021-01-12 03:41:24	-						
LynchWine	Version 37	-	Version 33	2021-09-14 10:40:44	-						
hih_xray	Version 5	-	Version 5	2021-08-16 15:20:37	domain:hls	-					
power-forecasting-model	Version 26	-	Version 25	2021-07-29 06:22:11		-					
RP DistilBERT Classifier	Version 1	-	Version 1	2021-07-28 15:58:46	-	2					
spark-model	Version 15	Version 15	Version 11	2021-07-08 16:55:54	-						
urbine_failure_model	Version 10	Version 8	Version 10	2021-10-14 02:47:14	_	-					

The Data Preparation

The Delta Lake Architecture

Data Store and Versioning

Delta Lake

- Scalable metadata
- Time travel
- Open format
- Unified Batch and Streaming
- Schema enforcement

Feature Store

- Data stored needs to be transformed into features to be useful
- Feature tables are Delta tables
- Feature Stores can save these features
 - Discoverable and reusable across an organization
 - Ensures consistency for Data Engineers, Data Scientists and ML Engineers
- Track feature lineage in a model

ETL and EDA

- Delta lake
 - Save data in scalable file formats like Parquet
 - Delta file formats can let you version control your data
- ETL
 - Read data
 - PySpark Ideal for large data
 - Tensorflow (tf.data) and Pytorch (DataLoader)
 - Clean and process data
 - PySpark/Pandas API on Spark can work with large datasets across clusters
 - Clean and prepare the data
 - Extract features and save them using Feature Stores

- EDA
 - Preliminary data analysis such as inspecting records, summary statistics
 - Visualize the data and its distribution

The Model Build

Model training

- DBRs provide your favorite DL frameworks such as Tensorflow, Pytorch, Keras etc.
- Integration with MLflow for model tracking
- Hyperparameter tuning with Hyperopt/Optuna
- Seamlessly run single node but multi-CPU/multi-GPU jobs
- Distributed training on multiple nodes with Horovod
 - NVlink/NCCL enabled instances available for accelerating DL workloads
 - Tightly coupled Train directly on Spark Dataframes with Horovod Estimator
 - Train on distributed Spark clusters with Horovod Runner

Distributed Training with Spark/Horovod

```
def train_hvd(checkpoint_path, learning_rate=1.0):
  # Initialize Horovod
  hvd.init()
  # Call the get_dataset function you created, this time with the Horovod rank and size
  (x_train, y_train), (x_test, y_test) = get_dataset(num_classes, hvd.rank(), hvd.size())
  model = get_model(num_classes)
  # Adjust learning rate based on number of GPUs
  optimizer = keras.optimizers.Adadelta(lr=learning_rate * hvd.size())
  # Use the Horovod Distributed Optimizer
  optimizer = hvd.DistributedOptimizer(optimizer)
  model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
  model.fit(x_train, y_train,
            batch_size=batch_size,
            callbacks=callbacks,
            epochs=epochs,
            verbose=2,
            validation_data=(x_test, y_test))
```

Distributed Training with Spark/Horovod contd...

Invoke training across multiple nodes

checkpoint_path = checkpoint_dir + '/checkpoint-{epoch}.ckpt'
Distribute training across 2 nodes
hr = HorovodRunner(np=2)
hr.run(train_hvd, checkpoint_path=checkpoint_path, learning_rate=0.1)

Inference using Horovod

Distributed Training

Data parallelism

- Data is divided among the different nodes
 - Entire model is copied to all the nodes
- Gradients are communicated back to all other nodes to update the model
 - Synchronous or asynchronous updates
- Model size is a concern

Model parallelism

- Model is divided among all the nodes
- Only works if you can take advantage of task parallelism in the model
- Model size is less of a concern

Deep Learning Synchronization

Model parameter server

- Central servers hold all shared parameters
- Workers receive updates from the central server
- Harder to scale
 - Speedup now depends on the overhead of communication with the central server

All-reduce

- All the machines store the shared parameters
- No central server
- Several architectures for this
 - Ring All-reduce
 - Tree All-reduce

Other Topics in Training

- Quantization-aware training
 - Lower-precision training to minimize memory/compute requirements
- Federated learning
 - Decentralized learning with the Federated Averaging algorithm (Google)
 - Keep data on device
 - Model is updated with data on device and updates sent back to central server
 - Updates from all devices are averaged
- Privacy-preserving learning
 - Learn from data that is encrypted or with minimal exposure to the data

Model tracking with MLflow

- The MLflow Tracking API
 - Integrations with common ML/DL tools such as Scikit-learn, Pytorch, Tensorflow, Spark etc.
- Logs metrics and artifacts (output files)
 - Can log this locally or a remote tracking server
- Tracking UI to query runs and visualize the results of a run
- Save and load models from a run

Model tracking with MLflow - Keras

with mlflow.start_run():

```
# log parameters
 mlflow.log_param("hidden_layers", args.hidden_layers)
 mlflow.log_param("output", args.output)
 mlflow.log_param("epochs", args.epochs)
 mlflow.log_param("loss_function", args.loss)
 # log metrics
 mlflow.log_metric("binary_loss", ktrain_cls.get_binary_loss(history))
 mlflow.log_metric("binary_acc", ktrain_cls.get_binary_acc(history))
 mlflow.log_metric("validation_loss", ktrain_cls.get_binary_loss(history))
 mlflow.log_metric("validation_acc", ktrain_cls.get_validation_acc(history))
 mlflow.log_metric("average_loss", results[0])
 mlflow.log_metric("average_acc", results[1])
 # log artifacts (matplotlib images for loss/accuracy)
 mlflow.log_artifacts(image_dir)
#log model
 mlflow.keras.log_model(keras_model, model_dir)
```

Model tracking with MLflow - Autolog

With many of the popular libraries, you can use the autologging feature

enable autologging
mlflow.sklearn.autolog()
train a model
model = LinearRegression()
with mlflow.start_run() as run:
 model.fit(X, y)

AutoML

- Only ML algorithms for now
- Works with 9.1 LTS ML DBRs and above
- Classification and Regression
 - Decision trees, Random Forests, Logistic Regression, XGBoost, LightGBM
- Forecasting with Prophet
- Run from the UI or use the command line API

AutoML

Metrics for the best trial:

<pre>import databricks.automl</pre>	
<pre>data_dir = "dbfs:/tmp/ensemble_au</pre>	toml/"
dbutils.fs.rm(data_dir, True)	
<pre>automl_models = databricks.automl</pre>	.classify(train_df,
	<pre>target_col = "churn",</pre>
	data_dir= data_dir,
	timeout_minutes=60,
	max_trials=1000)

16	Validation	Train
f1_score	0.799	0.809
score	0.805	0.818
recall_score	0.805	0.818
accuracy_score	0.805	0.818
log_loss	0.407	0.392
precision_score	0.797	0.809
roc_auc_score	0.852	0.865

AutoML contd...

1 automl_models.experiment

Out[46]: <Experiment: artifact_location='dbfs:/databricks/mlflow-tracking/1467187977257554', experiment_id='1467187977257554', lifecycle_stage='activ e', name='/Users/srijith.rajamohan@databricks.com/databricks_automl/21-10-14-16:29-automl_ensemble-13783057/automl_ensemble-Experiment-13783057', tag

s={'_databricks_automl': 'True',

'_databricks_automl.best_trial_notebook_id': '1467187977257758',

'_databricks_automl.data_dir': 'dbfs:/tmp/ensemble_automl/',

'_databricks_automl.evaluation_metric': 'val_f1_score',

'_databricks_automl.evaluation_metric_order_by_asc': 'False',

'_databricks_automl.exploration_notebook_id': '1467187977257555',

'_databricks_automl.max_trials': '1000',

'_databricks_automl.problem_type': 'classification',

'_databricks_automl.run_id': 'b9993667-17b2-49f5-8230-b61a095c0313',

'_databricks_automl.start_time': '1634228966',

'_databricks_automl.state': 'RUNNING',

'_databricks_automl.target_col': 'churn',

'_databricks_automl.timeout_minutes': '60',

'mlflow.experimentType': 'MLFLOW_EXPERIMENT',

'mlflow.ownerEmail': 'srijith.rajamohan@databricks.com',

'mlflow.ownerId': '3655034657934253'}>

Command took 0.02 seconds -- by srijith.rajamohan@databricks.com at 10/14/2021, 1:47:05 PM on Test

AutoML - Load the best model

```
print(automl_models.best_trial.model_description)
1
   best_model_uri = automl_models.best_trial.model_path
2
   metrics = automl models.best trial.metrics
3
   print('accuracy=', metrics['val_accuracy_score'], ' f1 score=', metrics['val_f1_score'], ' precision=', metrics['val_precision_score'], \
4
5
                    ' recall=',metrics['val_recall_score'], ' roc_auc_score=',metrics['val_roc_auc_score'])
   predict_udf = mlflow.pyfunc.spark_udf(spark, model_uri=best_model_uri, result_type="integer")
6
   test_df = test_df.withColumn("bestModel", predict_udf())
7
   display(test_df)
8
```

```
    (1) Spark Jobs
```

AutoML - Experiments

Showing 100 matching runs

€¢R	efresh	Compare	Delete	Download C	sv 🛃 🗸 🗸	val_f1_score	~	All	\vee				
≣	E	រិColumns	0 Q me	etrics.rmse < 1 ar	nd params.r	nodel = "tree"	Searc	h =	Filter	Clear			
										Metrics <			
	Start Time		Run Name	User	Source	Version	Models	5		training_accura	training_f1_scc	training_log_lo	tra
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	💊 sklea	arn		0.818	0.809	0.392	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 skle	arn		0.828	0.82	0.372	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 skle	arn		0.829	0.821	0.387	0.8
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.996	0.996	0.074	0.9
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 sklei	arn		0.808	0.794	0.428	0.7
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.829	0.82	0.376	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.819	0.81	0.394	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	Noteboo	ok: -	😪 sklea	arn		0.824	0.816	0.384	0.8
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.82	0.812	0.39	0.8
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Notebo	ok: -	😪 sklea	arn		0.819	0.808	0.395	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Notebo	ok: -	💊 sklea	arn		0.811	0.802	0.402	0.8
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	Noteboo	ok: -	😪 sklea	arn		0.793	0.774	0.434	0.7
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Noteboo	ok: -	😪 sklei	arn		0.846	0.84	0.352	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.869	0.864	0.309	0.8
	⊘ 12 d	ays ago	xgboost	srijith.rajam	B Noteboo	ok: -	😪 sklea	arn		0.819	0.809	0.547	0.8
	⊘ 12 d	ays ago	lightgbm	srijith.rajam	B Noteboo	ok: -	🗞 skle	arn		0.99	0.99	0.024	0.9

The Model Inference and Deployment

Model Inference - Pandas UDF

- Use a compiled DL model with Pandas UDF for distributed inference
- Scalar pandas UDF (batch of data) vs. Iterator pandas UDF (iterator of batches) here so model is no initialized for every batch

```
@pandas_udf(ArrayType(FloatType()), PandasUDFType.SCALAR_ITER)
def predict_batch_udf(image_batch_iter):
    batch_size = 64
    model = ResNet50(weights=None)
    model.set_weights(bc_model_weights.value)
    for image_batch in image_batch_iter:
        images = np.vstack(image_batch)
        dataset = tf.data.Dataset.from_tensor_slices(images)
        dataset = dataset.map(parse_image, num_parallel_calls=8).prefetch(5000).batch(batch_size)
        preds = model.predict(dataset)
        yield pd.Series(list(preds))
```

predictions_df = df.select(predict_batch_udf(col("data")).alias("prediction"))

Model Packaging with MLflow Projects

MLProject file for reproducible executions

File under folder sklearn_elasticnet_wine

Execute this project using the command below

```
name: tutorial
conda_env: conda.yaml
entry_points:
  main:
    parameters:
        alpha: {type: float, default: 0.5}
        l1_ratio: {type: float, default: 0.1}
        command: "python train.py {alpha} {l1_ratio}"
```

mlflow run sklearn elasticnet wine -P alpha=0.42

Model Serve with MLflow

Serve the model

mlflow models serve -m

/Users/mlflow/mlflow-prototype/mlruns/0/7c1a0d5c42844dcdb8f5191146925

174/artifacts/model -p 1234

Send a request

curl -X POST -H "Content-Type:application/json; format=pandas-split"
--data '{"columns":["alcohol", "chlorides", "citric acid",
],"data":[[12.8, 0.029, 0.48]]}' http://127.0.0.1:1234/invocations

Thank you!

