
Deep Learning with
Databricks
Srijith Rajamohan, Ph.D.
John O’Dwyer

Open
Unify your data

ecosystem with open
source, standards and

formats

Built on the innovation of
some of the most

successful open source
data projects in the world

30+ Million
monthly downloads

Data Analysts

Data Engineers

Data Scientists

Datasets

Notebooks

Dashboards

Models

Collaborative
Unify your data teams

to collaborate across the
entire data and

AI workflow

Questions for Scalable ML
▪ Track the provenance and reason for model creation
▪ What training data was used, if any?

▪ Proprietary data, sensitive data, storage, data retention period?
▪ Real-time or batch?

▪ How are the models being used and who is using it?
▪ Exploratory analysis and production environment?

▪ Is model performance being measured regularly and is the model being updated?
▪ Is the model well documented to ensure reuse?
▪ Is the model deployment process being automated?
▪ Institutional adoption and support

Best Practices for ML
▪ Software engineering practices

▪ Code quality best practices
▪ Validate your data

▪ Ensure proper data types and format are fed to your model (Schema validation)
▪ Ensure no data drift, can render a supervised model ineffective

▪ Version and track your experiments like code!
▪ Changing hyperparameters, inputs, code etc.

▪ Monitor predictive performance over time
▪ Ensure model performance does not degrade over time
▪ Ensure model fairness across different classes of data (bias)

MLOps = ML + DataOps + DevOps

Build -> Test -> Deploy -> Monitor -> Feedback -> Build

What is MLOps?

Model management

Databricks Ecosystem for ML/DL
▪ Integrated Environment

▪ Use compute instances from AWS, Azure or GCP
▪ Centered around a notebook environment

▪ Version control them with GitHub
▪ Integrated ‘DBFS’ filesystem that can mount cloud filesystems like S3
▪ Mix SQL, Python, R and Bash in the same notebook
▪ Schedule jobs to run anytime

▪ Databricks Runtimes (DBRs)
▪ Preinstalled with packages for ML/DL
▪ Additional packages can be installed per cluster or per notebook

▪ MLflow integrated into the Databricks platform
▪ Model tracking for experiment management/reproducibility
▪ MLflow projects for packaging an experiment
▪ Model serving with MLflow

Workspace

Workspace

Notebooks

Job scheduling

Job page

Experiments

Registered models

The Data Preparation

The Delta Lake Architecture

Data Store and Versioning

▪ Scalable metadata
▪ Time travel
▪ Open format
▪ Unified Batch and Streaming
▪ Schema enforcement

Delta Lake

▪ Data stored needs to be transformed
into features to be useful

▪ Feature tables are Delta tables
▪ Feature Stores can save these features

▪ Discoverable and reusable across an
organization

▪ Ensures consistency for Data Engineers,
Data Scientists and ML Engineers

▪ Track feature lineage in a model

Feature Store

ETL and EDA
▪ Delta lake

▪ Save data in scalable file formats like Parquet
▪ Delta file formats can let you version control your data

▪ ETL
▪ Read data

▪ PySpark - Ideal for large data
▪ Tensorflow (tf.data) and Pytorch (DataLoader)

▪ Clean and process data
▪ PySpark/Pandas API on Spark can work with large datasets across clusters
▪ Clean and prepare the data
▪ Extract features and save them using Feature Stores

▪ EDA
▪ Preliminary data analysis such as inspecting records, summary statistics
▪ Visualize the data and its distribution

The Model Build

Model training
▪ DBRs provide your favorite DL frameworks such as Tensorflow, Pytorch,

Keras etc.
▪ Integration with MLflow for model tracking
▪ Hyperparameter tuning with Hyperopt/Optuna
▪ Seamlessly run single node but multi-CPU/multi-GPU jobs
▪ Distributed training on multiple nodes with Horovod

▪ NVlink/NCCL enabled instances available for accelerating DL workloads
▪ Tightly coupled - Train directly on Spark Dataframes with Horovod Estimator
▪ Train on distributed Spark clusters with Horovod Runner

Distributed Training with Spark/Horovod

Distributed Training with Spark/Horovod contd...
Invoke training across multiple nodes

Inference using Horovod

Distributed Training

▪ Data is divided among the different
nodes
▪ Entire model is copied to all the nodes

▪ Gradients are communicated back to
all other nodes to update the model
▪ Synchronous or asynchronous updates

▪ Model size is a concern

Data parallelism

▪ Model is divided among all the nodes
▪ Only works if you can take advantage of

task parallelism in the model
▪ Model size is less of a concern

Model parallelism

Deep Learning Synchronization

▪ Central servers hold all shared
parameters

▪ Workers receive updates from the
central server

▪ Harder to scale
▪ Speedup now depends on the overhead

of communication with the central
server

Model parameter server

▪ All the machines store the shared
parameters

▪ No central server
▪ Several architectures for this

▪ Ring All-reduce
▪ Tree All-reduce

All-reduce

Other Topics in Training

▪ Quantization-aware training
▪ Lower-precision training to minimize memory/compute requirements

▪ Federated learning
▪ Decentralized learning with the Federated Averaging algorithm (Google)
▪ Keep data on device
▪ Model is updated with data on device and updates sent back to central server
▪ Updates from all devices are averaged

▪ Privacy-preserving learning
▪ Learn from data that is encrypted or with minimal exposure to the data

Model tracking with MLflow

▪ The MLflow Tracking API
▪ Integrations with common ML/DL tools such as Scikit-learn, Pytorch,

Tensorflow, Spark etc.
▪ Logs metrics and artifacts (output files)

▪ Can log this locally or a remote tracking server
▪ Tracking UI to query runs and visualize the results of a run
▪ Save and load models from a run

Model tracking with MLflow - Keras

Model tracking with MLflow - Autolog

With many of the popular libraries,
you can use the autologging feature

AutoML

▪ Only ML algorithms for now
▪ Works with 9.1 LTS ML DBRs and above
▪ Classification and Regression

▪ Decision trees, Random Forests, Logistic Regression, XGBoost, LightGBM
▪ Forecasting with Prophet
▪ Run from the UI or use the command line API

AutoML

AutoML contd...

AutoML - Load the best model

AutoML - Experiments

The Model Inference and Deployment

Model Inference - Pandas UDF

▪ Use a compiled DL model with Pandas UDF for distributed inference
▪ Scalar pandas UDF (batch of data) vs. Iterator pandas UDF (iterator of

batches) here so model is no initialized for every batch

Model Packaging with MLflow Projects

MLProject file for
reproducible executions

File under folder
sklearn_elasticnet_wine

Execute this project using
the command below

mlflow run sklearn_elasticnet_wine -P alpha=0.42

Model Serve with MLflow

curl -X POST -H "Content-Type:application/json; format=pandas-split"

--data '{"columns":["alcohol", "chlorides", "citric acid",

],"data":[[12.8, 0.029, 0.48]]}' http://127.0.0.1:1234/invocations

mlflow models serve -m

/Users/mlflow/mlflow-prototype/mlruns/0/7c1a0d5c42844dcdb8f5191146925

174/artifacts/model -p 1234

Serve the model

Send a request

Thank you!

