
An Introduction to
Machine Learning

Srijith Rajamohan, Ph.D.
Virginia Tech

October 16, 2018

ML Basics

2

MLTaxonomy

Classification - Classify an input as belonging to a
particular class from a group of classes

Regression - Produce a numerical result for an input

These can be further subdivided into Supervised,
Unsupervised, Semi-supervised and Reinforcement
Learning based on whether they are trained with
human supervision or not

3

MLTaxonomy contd..

Instance-based - The system learns the training
samples by heart and generalizes to new cases

Model-based - Build a model from the examples and
use the model to predict new cases

4

MLTaxonomy contd..

Discriminative Learning
We do not model the data distribution explicitly

A functional form is adopted and the parameters
are estimated by minimizing a cost function

Simpler models can be used but the input data
distribution is ignored even though it can carry
important information

Generative Learning
By contrast the data distribution is used here

We end up with one distribution per class, which has
to be learned

5

ParametricMethods

Assume that the samples come from a distribution

We attempt to determine the parameters of this
distribution, called the sufficient statistics

Once we have these parameters, we can now make
predictions

Fixed number of parameters

6

Non-parametricMethods

Non-parametric method have parameters too

However the number of parameters depend on the
size of the data and could theoretically be infinite

Increased need for memory and computation, as a
function of data size, for non-parametric methods

7

A little bit of Probability

A probability distribution of a discrete random variable
is given by P(X) - Probability mass function

The probability distribution of continuous random
variables is denoted as p(x) - also called Probability
density function

p(xi|C) is the conditional probability that an event
belonging to class ’C’ has value xi, assuming
continuous x. Or seen another way, given class ’C’ the
probability you would see the value xi

8

A little bit of Probability contd..

A prior or knowledge that we have beforehand of the
class is given by P(Ci)

p(xi) is the evidence ormarginal probability that an
observation ’xi’ is seen regardless of the class

Class likelihood is defined as p(xi|Ci), the conditional
probability we saw earlier

For class prediction given an input, we define a
posterior P(Ci|xi), which is the conditional probability
that given ’xi’, the probability of it being in class ’Ci’

9

A little bit of Probability contd..

For example, think of two classes related to the
weather- it rains/ does not rain and we have
observations of temperatures for both of these
classes
The prior is the probability of these classes, that it
either rains or it doesn’t. The evidence indicates the
probability of seeing this temperature measurement.
The likelihood indicates, given a temperature, the
probability that belonged to one of the classes, for
.e.g ’Rained’
The posterior here is the probability, given a
temperature measurement, the probability of it
raining or not raining

10

Key Point - Bayes Rule

Bayes rule can be summarized as:

Posterior = Prior
Evidence

× Likelihood (1)

Or in mathematical terms

P(Ci|xi) =
P(Ci)× p(xi|Ci)

p(xi)
(2)

11

Entropy and Information

Given a discrete variable ’x’, it’s entropy measures
randomness over all possible outcomes of that
variable.

H(x) = −
∑
x

P(x)log(P(x)) (3)

Similarly the average mutual information between two
random variables ’x’ and ’y’ is defined as

I(x, y) = −
∑
x

∑
y

P(x, y)log(P(x, y)
P(x)P(y)

) (4)

If the average mutual information is 0, the two
variables are statistically independent

12

Kullback-Leibler Divergence

Used to measure the dissimilarity between two PDFs.

KL(p||q) =
∫ ∞

−∞
p(x)logp(x)

q(x)
dx (5)

KL divergence is 0 if both distributions are the same.

The KL divergence metric is not symmetric and does
not satisfy the condition to be a distance metric, use
Jensen-Shannon divergence for that

Mutual Information can be written as the KL
divergence between p(x, y) and p(x)p(y)

13

Maximum Likelihood Estimation

Given a i.i.d sample X = {xt}N1 , drawn from a
distribution with a probability density function p(x|θ)
defined up to parameters θ. The maximum likelihood
estimate of the parameter θ given the sample is the θ
that makes X the most likely to be drawn and can be
determined from the product of the likelihoods of the
individual points.

l(θ|X) =
N∏
t=1

p(xt|θ) (6)

14

Maximum Likelihood Estimation contd..

We want to maximize the likelihood term l(θ|X) above.
Sometimes we take the logarithm of the above term to
form the log likelihood.

L(θ|X) = P(X|θ) =
N∑
t=1

log(p(xt|θ)) (7)

To find the θ that maximizes the chance of drawing the
samples ’X’, we differentiate L w.r.t. θ and we set
∂L
∂θ

= 0 to solve for θ

15

MaximumA Posteriori Estimate

If there is a priori information about the distribution
of θ, we can use that information by considering θ as
a random variable.

p(θ|X) = p(X|θ)p(θ)
p(X)

(8)

To make a prediction using this parametric distribution
p(θ|X) and if we try to do prediction using an estimator
given by y = g(x|θ) like we do in regression, we now
have to integrate in the form to get the result

y =
∫

g(x|θ)p(θ|X)dθ (9)

since θ is a distribution instead of a point estimate
16

MaximumA Posteriori Estimate contd..

Usually not possible to do the integration over the
density, so we replace the density with a point
estimate.
If the posterior density p(θ|X) has a narrow peak
around its mode, we can usemaximum a posteriori
estimate to compute an estimate for θ

θMAP = argmaxθ[p(θ|X)]
yMAP = g(x|θMAP)

(10)
(11)

Note that in the first equation above on the previous
page, the first term in the numerator is the same as
the equation for the MLE estimate.
If we have no prior information about θ, the prior
distribution is flat and the posterior will have the
same form as the likelihood, i.e. MAP = MLE .

17

Bayes Estimator

Another estimate is to compute the expected value of
θ

So instead of taking the maximum value from the
mode of the distribution, we compute the weighted
average of the θ over its posterior distribution (or in
other words the expected value)
The assumption is that the mean value for a random
variable is the best estimate for it
If the posterior is not unimodal both the MAP and
Bayes’ estimators lose information

θBayes =

∫
θp(θ|X)dθ (12)

18

Mean-square Error of the Estimator

Since the parameter θ depends on the training
samples, θ is a random variable and can be
represented as θ̂. Let us assume that the true
estimator is θ0

MSE = E[(θ̂ − θ0)
2] (13)

Simplifying the above, we get

MSE = E[(θ̂ − E[θ̂])2] + (E[θ̂]− θ0)
2 (14)

The first term above is variance and the second term is
the square of bias

19

Bias-Variance Tradeoff

The MSE has error from the variance of the estimator
around it’s mean value

The second contribution to the error is from the
difference of the estimator mean from the optimal
estimate

One cannot make both terms small simultaneously

This is called the bias variance trade-off

20

Bias-Variance Tradeoff contd..

In order to reduce the bias one has to increase the
model complexity, which increases the variance as
we change the training data.

Increasing the model complexity can also result in
over fitting

Decreasing the model complexity can reduce
variance but this increases the bias

To reduce both terms simultaneously increase the
number of training data points and increase the
complexity of the model carefully. After a certain
point, increasing either can result in an increase in
the MSE

21

Hyperparameter

What is a hyperparameter?

It is a learning parameter of the algorithm, not a
parameter of a model, e.g. the learning rate of an
algorithm

Determines how the algorithm learns/performs

Must be set prior to learning

Determining the right hyperparameters is
problem-specific often

22

Batch vs Online Learning

Batch - The algorithm is run using the entire data.
Better for smaller data size, e.g. using Gradient
Descent

In batch (also called offline learning) learning, if you
have new data you need to train the whole model
from scratch

Online - Model learns incrementally on the fly. The
only option for Big Data, e.g. using Stochastic
Gradient Descent

In online learning the data can be fed individually or
in small batches calledmini-batches

23

Cross-validation

Once the model is trained you have to determine
how well it performs

The data is divided into a training set and a test set

Tuning the hyperparameters can be done with a third
set called a validation set

The goal of cross validation is two-fold: to get an
estimate for the variance or consistency of the
models performance across different datasets and to
fine-tune the hyperparameters to get a better model

24

K-fold Cross-validation

In k-fold cross-validation the training set is divided into
k non-overlapping folds, the training is performed on
different k-1 folds and tested against the one left out

This gives us an understanding of how the model
performance varies for those model parameters
obtained using a certain combination of
hyperparameters

Repeat this process by changing the hyperparamters

This process of fine-tuning will give you a better
model whose performance is a predictable

25

Overfitting and Underfitting

Tension between optimization and generalization.

Optimization refers to the process of adjusting a
model to get the best performance possible on the
training data

Generalization refers to how well the trained model
performs on data it has never seen before

The error rate on new cases is called the
generalization error

26

Overfitting and Underfitting contd...

At the beginning of training, optimization and
generalization are correlated: the lower the loss on
training data, the lower the loss on test data. While
this is happening, your model is said to be underfit:
there is still progress to be made; the network hasn’t
yet modeled all relevant patterns in the training data

But after a certain number of iterations on the
training data, generalization stops improving, and
validation metrics stall and then begin to degrade:
the model is starting to overfit

27

Overfitting

These graphs are typical of overfitting

28

Challenges inMachine Learning

Insufficient quantity of training data

Representative training data

Poor quality of data

Using irrelevant features

Over fitting the model

Under fitting the model

29

Algorithms

30

Gradient Descent

Can be used to find the solution of non-linear
equations iteratively

Consider our solution space as a n-dimensional space

If it is a convex equation, we can think of it as an
n-dimensional bowl that has a unique minimum

Starting from a random location in the bowl, we find
the local gradient at that location for the cost function

We move down in the direction of decreasing
gradient. Once the gradient is zero, you have
attained the minimum

31

Gradient Descent contd..

The size of the steps
are determined by the
learning rate
hyperparameter
Too small and the
algorithm will take an
excessive amount of
time to converge, too
large and the
algorithm may diverge

32

Gradient Descent and Non-convex
Functions

Several local minima
and GD may fail to
converge to the global
minimum
Depends on the
starting point

33

Gradient Descent and Feature Scaling

All features should
have the same scale, if
not convergence can
be slow
Two ways to perform
feature scaling:
normalization and
standardization
Standardization is less
affected by outliers

34

Batch Gradient Descent

Compute the gradient with respect to each model
parameter θj

Computed using the full dataset

Scales well with the number of features

Can be slow for really large data

35

Update using batch gradient for Linear
Regression

The derivative of the MSE cost function w.r.t each
parameter indicated by index ’j’ is shown below. The
summation over ’i’ is for each instance of the
observation ’x’

∂

∂θj
MSE(θ) = 2

m

m∑
i=1

(θT · xi − yi)xij (15)

Update the weights or parameters as shown below

θ = θ − η∇θMSE(θ) (16)

36

Stochastic Gradient Descent

Instead of using the entire data set, only one instance
is used to update the gradient

Stochastic in nature and therefore much less regular
than batch gradient descent

The convergence irregularity can also be advantage
for cost functions with local minimum because it can
kick out of local minimum

Gradual reduction of the learning parameter called
simulated annealing

37

Stochastic Gradient Descent contd..

Convergence issues of
Stochastic GD

38

Mini-batch Gradient Descent

Instead of using the entire data set or only one
instance, small mini-batch samples are used to
update the gradient

Randomly sampled

Convergence less erratic than Stochastic Gradient
Descent

39

Supervised Learning

40

Examples of Supervised Learning

k-Nearest Neighbors

Linear Regression

Logistic Regression

Support Vector Machines (SVMs)

Decision Trees

Random Forests

Neural networks

41

Linear Regression

Assume a linear relationship between the data
denoted by x, which is a vector of features for a single
training instance and the output denoted by ŷ. θ is a
vector of model parameters

ŷ = θ0 + θ1x1 + θ2x2 + . . . (17)

In vector notation we get

ŷ = θT · x = hθ(x) (18)

The term hθ(x) is called the hypothesis function

42

MSE for Linear Regression

For a set of data denoted by the matrix X, we can find
the list of parameters θi that satisfies the condition for
all data instances

MSE(θ) = 1

m

m∑
i=1

(θT · xi − yi)2 (19)

The Normal Equation gives the closed-form solution of
θ that minimizes the error above

θ̂ = (XT · X)−1 · XT · y (20)

43

Computational Complexity

Computational complexity of the normal equation is
the order of O(n2.4) to O(n3)

Works well for large data sets if they fit into memory,
if so we get the solution from all the parameters in
closed-form

If the data is too large we have to resort to iterative
training algorithms such as Gradient Descent

44

Logistic Regression

Inspite of the name it is actually used for classification

Estimates the probability that an instance belongs to
the particular class

Uses the logistic/logit function (also called a sigmoid
function) to compute a probability p̂

p̂ = σ(θT · x) (21)

where

σ(t) = 1

1 + e−t (22)

45

MSE for Logistic Regression

Cost function is similar to linear regression

We compute the gradient with respect to all θi

The MSE is proportional to the term shown below

MSE(θ) ∝ 1

m

m∑
i=1

(σ(θT · xi)− yi)2 (23)

46

Cost Function for Logistic Regression

So how do we train this for binary classification?

Let y be the real output and ŷ be the computed
output and p̂ be the computed probability

We compute the gradient with respect to all θi

ŷ =
{

0, p̂ < 0.5
1, p̂ > 0.5

}
(24)

The cost function is given by

c(θ) =
{

−log(p̂), y = 1
−log(1− p̂), y = 0

}
(25)

47

Log Loss Cost Function.

The cost function is designed such that it gives a high
value for an incorrect prediction

A log loss function using the above cost function, but
averaged out over the entire training data, can be
written as shown below

C(θ) = −1.0 · 1

m

m∑
i=1

[yi · log(p̂i) + (1− yi) · log(1− p̂i)]

(26)

Compute the partial derivatives with respect to the
parameters θ and solve for them using a gradient
based approach

48

Artificial Neural Network - Perceptrons

Computes a weighted sum of inputs then uses a
linear threshold

Instances have to be linearly separable

Unlike logistic regression does not output class
probabilities, instead uses a hard threshhold

49

Artificial Neural Network - Perceptrons
contd..

Linear threshold unit
Multi-layer perceptron
added a hidden layer
In 1986 introduced
Back propagation also
now known as the
Reverse-mode autodiff
Non-linear threshold
units such as the
hyperbolic tangent
function

50

Multilayer Perceptrons

Multilayer Perceptrons are universal approximators

You can approximate any function (including
non-linear) with a hidden layer that has non-linear
activation functions

Although theoretically you can do this, not practical
since ’d’ inputs might need 2d hidden units

51

Structure of a multi-layer neural network

52

Neural Network

Compute weighted sum of outputs across all layers
as wT · x

Apply an activation function to the outputs as
σ(wT · x), where σ could be a step function, ReLU,
sigmoid, tanh etc.

Compute the loss function.

Use back-propagation to calculate weight updates for
all nodes

Repeat till weight updates are below a certain
defined threshold

53

Neural Network
For a ’k-parallel’ perceptron use the online update rule
to increment the weights (i is output, j is input, t is
index)

∆wt
ij = −η

∂Ei
∂wj

= η(yti − ŷti)xtj (27)

The above can be derived from gradient descent, or
taking the derivative of the squared error function
∇wE. For a single output neural network with multiple
layers, use the backpropgation algorithm to compute
the gradient w.r.t any node wj in layer ’h’ as

∆wt
ij = −η

∂E
∂wj

= −η
∂Ei
∂yt

∂yt

∂znt ...
∂zht

∂wht
j

(28)

More info on autodiff:
https://srijithr.gitlab.io/post/autodiff/ 54

https://srijithr.gitlab.io/post/autodiff/

Neural Network - Activation functions

Logistic function has a
mean of 0.5; saturates
towards the ends with
a derivative close to
zero
Hyperbolic tangent
has a mean of zero
and is slightly better in
deep networks
ReLU does not
saturate, faster to
compute and can
possibly result in
sparse networks

Activation functions and
their derivatives

55

Tuning Network Size

Simpler networks are better generalizers (!)

Structural adaptation into the learning algorithm,
either a constructive or destructive approach

Weight decay is an example of a destructive method

Dynamic node creation is an example of a
constructive method

56

Decision Trees

Consists of tree-like structure where decisions are
made at each node

The goal at each node is to determine which feature
is to be tested and the threshold for this feature

Once traversed all the way down, it ends up with a
class(for a classifier)

Feature space is partitioned using hyperplanes, using
a series of questions

Splitting criterion, stop splitting rule and class
assignment rule

57

Example of a Decision Tree

58

Bootstrap Aggregation - Bagging

One way to get a diverse set of classifiers is to use very
different training algorithms. Another approach is to
use the same training algorithm (classifier) but to train
them on different random subsets of the training set.

59

Boostrap Aggregating - Bagging

Used to reduce the variance and improve the
generalization performance

Uses bootstrapping which is sampling with
replacement, pasting is sampling without
replacement

This is done a number of times and the results are
aggregated

For classification the class is predicted by a majority
vote

60

Random Forests

Ensemble of trees trained with bagging (sometimes
pasting)

Combines bagging with random feature selection -
uses a subset of the features at each node

This extra randomness improves performance

More successful with classification tasks as opposed
to regression tasks

Boosting is combining several weak learners
sequentially to correct its predecessor to form a
strong learner

61

Unsupervised
Learning

62

Unsupervised Learning

We wish to learn the inherent structure of our data
without using explicitly-provided labels

Since no labels are provided, there is no specific way
to compare model performance in most
unsupervised learning methods.

Two common use-cases for unsupervised learning
are exploratory analysis and dimensionality
reduction.

63

Examples of Unsupervised Learning

Clustering - e.g. k-Means, Hierarchical Cluster
Analysis, Expectation Maximization

Visualization and Dimensionality Reduction - e.g.
Principal Component Analysis, Kernel PCA,
Multidimensional Scaling, t-distributed Stochastic
Neighbor Embedding

Association Rule learning - e.g. Apriori, Eclat

64

Unsupervised Learning - Clustering

Class labels are not known

We want to find hidden structures in the data

We want to find a grouping of data such that similar
items are together

Exploratory in nature

65

k-Means Clustering

Randomly pick k centroids for the clusters

Assign each sample to the nearest centroid

Compute the centroid again after all points have
been assigned to clusters

Repeat steps two and three above till the points do
not change cluster assignment

Distance can be based on any metric, commonly
euclidean

66

The Curse of Dimensionality

Distance between two points is very large in
high-dimensional space

New instances will be far away from training
instances making predictions less reliable

Working in higher dimensions can lead to overfitting
the model

The size of the training set required for higher
dimensions grows exponentially with the number of
dimensions

Fortunately, most real data lives in a
lower-dimensional subspace, sometimes referred to
as themanifold assumption

67

Principal Component Analysis

One of the most
popular
dimensionality
reduction techniques
Projects data to the
hyperplane closest to
the data
Select the axis that
preserves the
maximum amount of
variance

68

Singular Value Decomposition for PCA

PCA finds a series of
axes on to which the
data can be projected
Each axis is orthogonal
to every other axis
Compute the Singular
Value Decomposition
Σ is a diagonal matrix
of singular values, U
and V are orthogonal
column matrices

X = U · Σ · VT (29)

V is the matrix of principal
axes or directions and its
columns are the principal
axes (The image above
needs correction)

69

Projecting using the Principal Components

Reduce dimensionality down to ’d’ dimensions

Singular values are usually ordered from increasing
to decreasing magnitude

Pick the ’d’ dimensions corresponding to the ’d’
largest singular values

Xdproj = X ·Wd (30)

Here Xdproj is the projected data (rows are
coordinates of new data) andWd is the matrix
containing the first ’d’ dimensions, i.e. use the first ’d’
columns of V

70

Some confusing terminology

Two sets of conventions exist regarding PCA
terminology

Convention 1 Convention 2
V Principal axis/direction Principal component
XV Principal component Principal component score

71

Explained Variance Ratio

It indicates the
proportion of the
dataset’s variance that
lies along the axis of
each principal
component.
Choose the number of
dimensions that add
up to a percentage of
the variance
If you’re using it for
visualization two or
three make sense

72

Deep Learning

73

Deep Learning or AI?

Deep Learning ⊂ Representation Learning ⊂Machine
Learning ⊂ AI

74

Deep learning

So far we have seen shallow neural networks

Deep neural networks usually have more than 10
layers

Vanishing/Exploding gradients problem, gradients
get smaller and smaller or diverge as they propagate
down to the lower layers

Suffer from severe overfitting

75

Deep learning

Deep Learning eliminates the need for feature
engineering

No need to manually extract features

You learn all the features

76

Deep learning -Weight Initialization

Initializing weights by drawing from a normal
distribution did not work

Xavier initialization for weights

The variance of inputs and outputs needed to be
maintained

When using the logistic activation function, draw
from normal distribution with mean 0 and standard
deviation given by the following

σ =

√
2

ninputs + ninputs
(31)

77

Batch Normalization

The distribution of each layer’s inputs changes during
training, as the parameters of the previous layers
change

Before the activation function of each layer,
zero-center and normalize the inputs

Scale and shift the result using two parameters

This operation lets the model learn the optimal scale
and mean of the inputs for each layer

Mean and standard deviation computed over the
mini-batch

Batch Normalization can also act like a regularizer

78

Transfer Learning

Try not to train a large
DNN from scratch
Find an existing DNN
that does something
similar to what you
want to do and then
retrain the higher
layers
Requires much less
training time and
training data

79

Fast Optimizers

Momentum

Nesterov Accelerated Gradient

AdaGrad

RMSProp

Adam

80

Avoiding Overfitting

L1 and L2 Regularization

Early stopping

Dropout

Max-Norm Regularization

Data Augmentation

81

Autoencoder

Composed of an
encoder and a decoder
Number of inputs be
the same as the
number of outputs
Outputs are often
called reconstructions
since the autoencoder
tries to reconstruct the
inputs
Penalizes output when
different from inputs

82

Recurrent Neural Networks

Unlike regular
networks has
connections pointing
backwards
Works with time series
data and can do
predictions
Can work with
arbitrary length
sequences
Useful in Natural
Language Processing
problems

83

Recurrent Neural Networks contd..

Output of a RNN for a single input

yt = σ(xTt ·wx + yTt−1 ·wy + b) (32)

where σ is any of the activation functions we have
seen. You can define a state for a RNN cell as
ht = f(yt−1, xt). You can think of this as a type of
memory.

84

Issues with Long Sequences in RNN

For long sequences, the RNN gets quite deep

Suffers from all the gradient issues we saw earlier as
well as long training time

Truncated backpropagation through time but loses
fine-grained data

Memory of first inputs gradually fades away

85

Long Short-Termmemory Cell

Has two state vectors,
long and short-term
state vectors
ht is short term state
and ct is long term
state
Detects long-term
dependencies better

86

Gated Recurrent Unit

Simplified version of
the LSTM, performs
just as well in a lot of
cases
Only one state vector

87

Convolutional Neural Networks

Two new blocks:
convolutional layers
and pooling layers
CNNs preserve the
spatial patterns in
data, great for image
classification

88

Convolutional Neural Networks - Pooling

Convolutional layers
apply a 2D convolution
filter
Pooling layers
subsample the data
A complete CNN
architecture is shown
here

89

