
Introduction to OpenACC

by

Srijith Rajamohan

1 / 52

Course Contents

2/52

This week:
• Introduction to OpenACC
• Data movement
• Express parallelism through directives
• Look at reduction examples
• Compute pixel values for a Mandelbrot set

2 / 52

What is OpenACC?

3/52

• Used for many-core architectures
• High-level programming model with emphasis on

portability
• Emerged in 2011
• Use compiler directives to expose parallelism

3 / 52

Progressively accelerate the code

4/52

• Identify the parallelism
• Express parallelism through directives
• Express data locality
• Optimize

4 / 52

Advantages and Disadvantages

5/52

• High-level and platform independent
• Performance not as high as something like CUDA
• Cannot represent architecture-specific details without

making it less portable
• Portability and performance are conflicting goals

5 / 52

OpenACC accelerator model

6/52

• Offload computation from host to accelerator
• Could be the same or different architecture, could be the

same memory space or separate memory space

Abstract memory model

6 / 52

Parallelism

7/52

• gang: a threadblock, may or may not synchronize
• worker: warp (groups of 32 threads)
• vector: threads within a warp, operates on data that is a

certain vector length

7 / 52

OpenACC accelerator model

8/52

Levels of parallelism

8 / 52

Directive syntax

9/52

Use the acc sentinel, which can be applied to code blocks.
Consists of directives and clauses.
Example

#pragma acc kernels

9 / 52

Porting cycle

10/52

• Parallelize loops: decorate loops with directives to provide
the compiler with information to parallelize the loops

• Optimize data locality: it is necessary for the compiler to
manage data movement between the host and the
accelerator

• Optimize loops: provide additional information on how to
restructure loops to expose parallelism or to reduce data
movement

10 / 52

Compiling the code

11/52

Compile using the PGI compiler. Get compiler feedback using the
”-Mprof=ccff” flag

Example

pgcc -I../common -acc -ta=nvidia,time
-Minfo=accel,ccff -o laplace2d_acc laplace2d.c

11 / 52

Parallelize loops

12/52

• During this process, focus on moving as much of the
computation to the accelerator as possible

• Ensure that the program gives correct results before
focusing on data movement.

12 / 52

Kernels construct

13/52

• Identifies a region of code that may contain parallelism
• Relies on the compiler to automatically parallelize the

code

13 / 52

Kernels construct

14/52

Example

#pragma acc kernels
{
for (i=0; i<N; i++) {
y[i] = 0.0f;
x[i] = (float)(i+1);
}

for (i=0; i<N; i++)
{

y[i] = 2.0f * x[i] + y[i];
}

}

14 / 52

Parallel loop

15/52

The parallel construct can be used along with the loop clause to
parallelize the code across gangs.

Example

#pragma acc parallel loop
for (i=0; i<N; i++)
{
y[i] = 0.0f;
x[i] = (float)(i+1);

}
#pragma acc parallel loop
for (i=0; i<N; i++)
{

y[i] = 2.0f * x[i] + y[i];
}

15 / 52

Parallel loop

16/52

• The programmer instructs that the loop is safe to
parallelize

• Each loop needs to have the construct
• Sometimes the kernel cannot determine if a loop is

parallelizable, e.g. when there is pointer aliasing or when
two arrays share the same memory.

16 / 52

Loop - private

17/52

• The private clause specifies that each loop iteration
requires it’s own copy of the variable

• Loop iterators are private by default
• Any scalar accessed within a parallel loop is first private

by default

17 / 52

Loop - reductions

18/52

• Reduction is similar to the private variables, except now a
reduction is done at the end of the loop on all the private
copies

• Result is returned in the variable after the loop exits
• Reduction may be specified on only a scalar variable

18 / 52

Jacobi iteration example

19/52

Example

while (error > tol && iter < iter_max) {
error = 0.0;
#pragma acc parallel loop reduction(max:error)
for(int j = 1; j < n-1; j++) {
#pragma acc loop reduction(max:error)
for(inti=1;i<m-1;i++) {

A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1]
+ Anew[j-1][i] + Anew[j+1][i]);

error = fmax(error, fabs(A[j][i] - Anew[j][i]));
}

}
}
...

19 / 52

Jacobi iteration example

20/52

Example

...
#pragma acc parallel loop
for(int j = 1; j < n-1; j++)
{
#pragma acc loop
for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];
} }
}

20 / 52

Jacobi iteration example

21/52

• The compiler can identify the inner loop based on the
outer parallel construct

• Placing one on the inner loop tells the compiler that the
loop is safe to parallelize

• Provide as much information to the compiler as possible

21 / 52

Jacobi iteration example - Kernels

22/52

Example

while (error > tol && iter < iter_max) {
error = 0.0;
#pragma acc kernels
for(int j = 1; j < n-1; j++) {
for(inti=1;i<m-1;i++) {

A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1]
+ Anew[j-1][i] + Anew[j+1][i]);

error = fmax(error, fabs(A[j][i] - Anew[j][i]));
}

}
}
...
}

22 / 52

Jacobi iteration example - Kernels

23/52

• The Kernels construct lets the compiler identify both the
loops as parallelizable

• It also identifies the reduction operator
• If the Kernels construct was around the convergence loop,

it would not have parallelized the loop
• Compared to the Parallel construct, you get more

parallelism for less directives.

23 / 52

Performance comparison

24/52

• The Kernels construct does well, however the Parallel loop
version does worse than the serial option

• This is because of the data transfer between the two
parallel loops

• This is because the compiler performs the analysis on a
region by region basis

• Data copied at the beginning and end of the region

24 / 52

Data locality

25/52

• Compilers must ensure that data is available if necessary
• The programmer will have knowledge of data needs that

the compiler cannot determine
• Provide the compiler with as much information as possible

to help prevent unnecessary data movement

25 / 52

Data Regions

26/52

• The Data construct facilitates the sharing of data between
multiple parallel regions

• It must begin and end in the same scope
• Can be added around one or more Parallel regions

26 / 52

Data construct - Example

27/52

Example

#pragma acc data
{
#pragma acc parallel loop
for (i=0; i<N; i++) {
y[i] = 0.0f;
x[i] = (float)(i+1);
}
#pragma acc parallel loop
for (i=0; i<N; i++) {
y[i] = 2.0f * x[i] + y[i];
}
}

27 / 52

Data construct

28/52

• The Data region in the example enables the arrays to be
reused between the two parallel regions

• This removes the data copies between the two regions
• However, for optimal data movement you need to add

data clauses

28 / 52

Data clauses

29/52

• copy - create space for the variables, copy data to the
region at the beginning of the region and copy it back at
the end

• copyin - create space for the variables on the device, copy
the value at the beginning but don’t copy it back to the
host when done

• copyout - create space for the variables but do not copy
the values in, copy the values back to the host when done

• present - the variables are already present, so no further
action needs to be taken (used when a data region exists
in a higher-level routine) ...

29 / 52

Data clauses continued...

30/52

• create - create space for the variables and release it at the
end of the region, but do not copy to or from the device

• deviceptr - device memory that is managed outside of
OpenACC, so these variables can be used without any
address translation

30 / 52

Data construct - Example

31/52

Example

#pragma acc data pcreate(x[0:N]) pcopyout(y[0:N])
{
#pragma acc parallel loop
for (i=0; i<N; i++)
{
y[i] = 0.0f;
x[i] = (float)(i+1);
}

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 2.0f * x[i] + y[i];
}}

31 / 52

Data lifetimes

32/52

• Enter and exit data directives can be used to identify
when data should be allocated or deallocated

• Precisely determine when data movement occurs
• They accept the create and copyin data clauses

32 / 52

Update construct

33/52

• Useful for synchronizing data between host and device
memory

• This takes device and host clauses for copying to the
device or to the host

33 / 52

Best practices tip

34/52

• Offload inefficient operations to move sections of the
application to the device

• Doing this even if the code lacks sufficient parallelism is
more efficient than transferring data back and forth

• For e.g. offload a serial section of the code with just 1
gang to the accelerator

34 / 52

Map parallelism to the hardware

35/52

• Gang clause
• Worker clause
• Vector clause
• Seq clause

35 / 52

Map parallelism to the hardware

36/52

• Apart from informing the compiler where to partition the
loops, the programmer may also provide information
about the number of gangs, workers and vector length to
use for the loops.

• In the case of the Kernels directive, the gang, worker and
vector clauses accept an integer parameter

• When using the Parallel directive, the information is
presented on the Parallel directive itself as num_gangs,
num_workers and vector_length clauses

36 / 52

Kernels - Example

37/52

Example

#pragma acc kernels
{
#pragma acc loop gang
for (i=0; i<N; i++)
#pragma acc loop vector(128)
for (j=0; j<M; j++)
...
}

37 / 52

Parallel - Example

38/52

Example

#pragma acc parallel loop gang vector_length(128)
for (i=0; i<N; i++)

#pragma acc loop vector
for (j=0; j<M; j++)

38 / 52

Device specific optimization

39/52

Example

#pragma acc parallel loop gang vector \
device_type(acc_device_nvidia) vector_length(128) \
device_type(acc_device_radeon) vector_length(256)
#pragma acc parallel loop gang vector_length(128)
for (i=0; i<N; i++)
#pragma acc loop vector
for (j=0; j<M; j++)
{
y[i] = 2.0f * x[i] + y[i]; }

39 / 52

Asynchronous operation

40/52

• Overlap the computation with the data transfer to
minimize the performance penalty

• The async clause can be added to Parallel, Kernels and
Update directives to specify that once the operation has
been sent to the accelerator, the CPU may continue
execution

• The wait directive instructs the runtime to wait for past
asynchronous operations to complete before proceeding.

40 / 52

Asynchronous operation

41/52

Example

#pragma acc parallel loop async
{
c[i] = a[i] + b[i]
}
#pragma acc update self(c[0:N]) async
#pragma acc wait

41 / 52

Asynchronous operation - queues

42/52

• It would be useful to expose independent operations so
that they could be executed independently

• Both async and wait have an integer number argument
that specifies a queue number

• All operations placed in a certain execute in-order, but
operations placed in different queues may operate in any
order

42 / 52

Asynchronous operation - queues

43/52

Work is enqueued in queues 1 and 2 for the loops

Example

#pragma acc parallel loop async(1)
for (int i = 0; i<N; i++)
{
a[i] = i; }

#pragma acc parallel loop async(2)
for (int i=0; i<N; i++)
{
b[i] = 2*i;
}

43 / 52

Asynchronous operation

44/52

wait(1) and async(2) ensures that work queue 2 does not proceed
until queue 1 has completed.

Example

#pragma acc wait(1) async(2)
#pragma acc parallel loop async(2)
for (int i=0; i<N; i++)
{
c[i] = a[i] + b[i]
}

#pragma acc update self(c[0:N]) async(2)
#pragma acc wait

44 / 52

Mandelbrot set

45/52

• Modify a simple application that generates a mandelbrot
set

• Each pixel can be independently calculated, easy to
parallelize

• Data transfer to copy the results back is expensive hence
overlap it with computation

45 / 52

Mandelbrot set

46/52

Example

#pragma acc parallel loop
for(int y=0;y<HEIGHT;y++) {

for(int x=0;x<WIDTH;x++) {
image[y*WIDTH+x]=mandelbrot(x,y);

}
}

46 / 52

Step 1 - Computation

47/52

• Break the computation up into chunks of work that can
be performed independently

• Determine the starting and ending bounds for each block

47 / 52

Step 1 - Computation

48/52

Example

int num_blocks = 8;
for(int block = 0; block < num_blocks; block++)
{
int ystart = block * (HEIGHT/num_blocks),

yend = ystart + (HEIGHT/num_blocks);
#pragma acc parallel loop
for(int y=ystart; y < yend ; y++)
{

for(int x=0;x<WIDTH;x++) {
image[y*WIDTH+x]=mandelbrot(x,y);

}
}
}

48 / 52

Step 2 - Data transfer

49/52

Example

int num_blocks = 8
int block_size = (HEIGHT/num_blocks)*WIDTH;
#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; block++)
{
...

#pragma acc update self(image[block*block_size:
block_size])
}

49 / 52

Step 3 - Overlapping computation
and data movement

50/52

• The calculation and copying are still being done
sequentially

• Make the operations asynchronous so that the copies and
computation can happen simultaneously

• Use asynchronous work queues to ensure that the
computation and data transfer within a single block are in
the same queue

• The block number is convenient for this
• Now we need a wait directive after the block loop to

ensure that all work completes before it is copied to the
host

50 / 52

Step 3 - Overlapping computation
and data movement

51/52

Example

int num_blocks = 8,
block_size = (HEIGHT/num_blocks)*WIDTH;
#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; block++) {
...

#pragma acc parallel loop async(block)
for(int y=ystart;y<yend;y++) {
...

#pragma acc update self(image[block*block_size:
block_size]) async(block)}
#pragma acc wait

51 / 52

52/52

Questions ?

52 / 52

