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Course Contents
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This week:
• Introduction to OpenACC
• Data movement
• Express parallelism through directives
• Look at reduction examples
• Compute pixel values for a Mandelbrot set
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What is OpenACC?
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• Used for many-core architectures
• High-level programming model with emphasis on

portability
• Emerged in 2011
• Use compiler directives to expose parallelism
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Progressively accelerate the code

4/52

• Identify the parallelism
• Express parallelism through directives
• Express data locality
• Optimize
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Advantages and Disadvantages
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• High-level and platform independent
• Performance not as high as something like CUDA
• Cannot represent architecture-specific details without

making it less portable
• Portability and performance are conflicting goals
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OpenACC accelerator model

6/52

• Offload computation from host to accelerator
• Could be the same or different architecture, could be the

same memory space or separate memory space

Abstract memory model
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Parallelism
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• gang: a threadblock, may or may not synchronize
• worker: warp ( groups of 32 threads )
• vector: threads within a warp, operates on data that is a

certain vector length
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OpenACC accelerator model
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Levels of parallelism

8 / 52



Directive syntax
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Use the acc sentinel, which can be applied to code blocks.
Consists of directives and clauses.
Example

#pragma acc kernels
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Porting cycle
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• Parallelize loops: decorate loops with directives to provide
the compiler with information to parallelize the loops

• Optimize data locality: it is necessary for the compiler to
manage data movement between the host and the
accelerator

• Optimize loops: provide additional information on how to
restructure loops to expose parallelism or to reduce data
movement
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Compiling the code
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Compile using the PGI compiler. Get compiler feedback using the
”-Mprof=ccff” flag

Example

pgcc -I../common -acc -ta=nvidia,time
-Minfo=accel,ccff -o laplace2d_acc laplace2d.c
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Parallelize loops
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• During this process, focus on moving as much of the
computation to the accelerator as possible

• Ensure that the program gives correct results before
focusing on data movement.
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Kernels construct
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• Identifies a region of code that may contain parallelism
• Relies on the compiler to automatically parallelize the

code
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Kernels construct
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Example

#pragma acc kernels
{
for (i=0; i<N; i++) {
y[i] = 0.0f;
x[i] = (float)(i+1);
}

for (i=0; i<N; i++)
{

y[i] = 2.0f * x[i] + y[i];
}

}
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Parallel loop
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The parallel construct can be used along with the loop clause to
parallelize the code across gangs.

Example

#pragma acc parallel loop
for (i=0; i<N; i++)
{
y[i] = 0.0f;
x[i] = (float)(i+1);

}
#pragma acc parallel loop
for (i=0; i<N; i++)
{

y[i] = 2.0f * x[i] + y[i];
}
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Parallel loop
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• The programmer instructs that the loop is safe to
parallelize

• Each loop needs to have the construct
• Sometimes the kernel cannot determine if a loop is

parallelizable, e.g. when there is pointer aliasing or when
two arrays share the same memory.
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Loop - private
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• The private clause specifies that each loop iteration
requires it’s own copy of the variable

• Loop iterators are private by default
• Any scalar accessed within a parallel loop is first private

by default
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Loop - reductions
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• Reduction is similar to the private variables, except now a
reduction is done at the end of the loop on all the private
copies

• Result is returned in the variable after the loop exits
• Reduction may be specified on only a scalar variable
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Jacobi iteration example
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Example

while ( error > tol && iter < iter_max ) {
error = 0.0;
#pragma acc parallel loop reduction(max:error)
for( int j = 1; j < n-1; j++) {
#pragma acc loop reduction(max:error)
for(inti=1;i<m-1;i++) {

A[j][i] = 0.25 * ( Anew[j][i+1] + Anew[j][i-1]
+ Anew[j-1][i] + Anew[j+1][i]);

error = fmax( error, fabs(A[j][i] - Anew[j][i]));
}

}
}
...
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Jacobi iteration example
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Example

...
#pragma acc parallel loop
for( int j = 1; j < n-1; j++)
{
#pragma acc loop
for( int i = 1; i < m-1; i++ ) {
A[j][i] = Anew[j][i];
} }
}
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Jacobi iteration example
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• The compiler can identify the inner loop based on the
outer parallel construct

• Placing one on the inner loop tells the compiler that the
loop is safe to parallelize

• Provide as much information to the compiler as possible
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Jacobi iteration example - Kernels

22/52

Example

while ( error > tol && iter < iter_max ) {
error = 0.0;
#pragma acc kernels
for( int j = 1; j < n-1; j++) {
for(inti=1;i<m-1;i++) {

A[j][i] = 0.25 * ( Anew[j][i+1] + Anew[j][i-1]
+ Anew[j-1][i] + Anew[j+1][i]);

error = fmax( error, fabs(A[j][i] - Anew[j][i]));
}

}
}
...
}
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Jacobi iteration example - Kernels
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• The Kernels construct lets the compiler identify both the
loops as parallelizable

• It also identifies the reduction operator
• If the Kernels construct was around the convergence loop,

it would not have parallelized the loop
• Compared to the Parallel construct, you get more

parallelism for less directives.
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Performance comparison
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• The Kernels construct does well, however the Parallel loop
version does worse than the serial option

• This is because of the data transfer between the two
parallel loops

• This is because the compiler performs the analysis on a
region by region basis

• Data copied at the beginning and end of the region
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Data locality
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• Compilers must ensure that data is available if necessary
• The programmer will have knowledge of data needs that

the compiler cannot determine
• Provide the compiler with as much information as possible

to help prevent unnecessary data movement
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Data Regions
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• The Data construct facilitates the sharing of data between
multiple parallel regions

• It must begin and end in the same scope
• Can be added around one or more Parallel regions
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Data construct - Example
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Example

#pragma acc data
{
#pragma acc parallel loop
for (i=0; i<N; i++) {
y[i] = 0.0f;
x[i] = (float)(i+1);
}
#pragma acc parallel loop
for (i=0; i<N; i++) {
y[i] = 2.0f * x[i] + y[i];
}
}
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Data construct
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• The Data region in the example enables the arrays to be
reused between the two parallel regions

• This removes the data copies between the two regions
• However, for optimal data movement you need to add

data clauses
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Data clauses
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• copy - create space for the variables, copy data to the
region at the beginning of the region and copy it back at
the end

• copyin - create space for the variables on the device, copy
the value at the beginning but don’t copy it back to the
host when done

• copyout - create space for the variables but do not copy
the values in, copy the values back to the host when done

• present - the variables are already present, so no further
action needs to be taken ( used when a data region exists
in a higher-level routine ) ...
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Data clauses continued...
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• create - create space for the variables and release it at the
end of the region, but do not copy to or from the device

• deviceptr - device memory that is managed outside of
OpenACC, so these variables can be used without any
address translation
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Data construct - Example
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Example

#pragma acc data pcreate(x[0:N]) pcopyout(y[0:N])
{
#pragma acc parallel loop
for (i=0; i<N; i++)
{
y[i] = 0.0f;
x[i] = (float)(i+1);
}

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 2.0f * x[i] + y[i];
}}
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Data lifetimes
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• Enter and exit data directives can be used to identify
when data should be allocated or deallocated

• Precisely determine when data movement occurs
• They accept the create and copyin data clauses
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Update construct
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• Useful for synchronizing data between host and device
memory

• This takes device and host clauses for copying to the
device or to the host
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Best practices tip
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• Offload inefficient operations to move sections of the
application to the device

• Doing this even if the code lacks sufficient parallelism is
more efficient than transferring data back and forth

• For e.g. offload a serial section of the code with just 1
gang to the accelerator
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Map parallelism to the hardware
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• Gang clause
• Worker clause
• Vector clause
• Seq clause
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Map parallelism to the hardware
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• Apart from informing the compiler where to partition the
loops, the programmer may also provide information
about the number of gangs, workers and vector length to
use for the loops.

• In the case of the Kernels directive, the gang, worker and
vector clauses accept an integer parameter

• When using the Parallel directive, the information is
presented on the Parallel directive itself as num_gangs,
num_workers and vector_length clauses
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Kernels - Example
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Example

#pragma acc kernels
{
#pragma acc loop gang
for ( i=0; i<N; i++)
#pragma acc loop vector(128)
for ( j=0; j<M; j++)
...
}
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Parallel - Example
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Example

#pragma acc parallel loop gang vector_length(128)
for ( i=0; i<N; i++)

#pragma acc loop vector
for ( j=0; j<M; j++)
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Device specific optimization
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Example

#pragma acc parallel loop gang vector \
device_type(acc_device_nvidia) vector_length(128) \
device_type(acc_device_radeon) vector_length(256)
#pragma acc parallel loop gang vector_length(128)
for ( i=0; i<N; i++)
#pragma acc loop vector
for ( j=0; j<M; j++)
{
y[i] = 2.0f * x[i] + y[i]; }
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Asynchronous operation
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• Overlap the computation with the data transfer to
minimize the performance penalty

• The async clause can be added to Parallel, Kernels and
Update directives to specify that once the operation has
been sent to the accelerator, the CPU may continue
execution

• The wait directive instructs the runtime to wait for past
asynchronous operations to complete before proceeding.
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Asynchronous operation
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Example

#pragma acc parallel loop async
{
c[i] = a[i] + b[i]
}
#pragma acc update self(c[0:N]) async
#pragma acc wait
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Asynchronous operation - queues
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• It would be useful to expose independent operations so
that they could be executed independently

• Both async and wait have an integer number argument
that specifies a queue number

• All operations placed in a certain execute in-order, but
operations placed in different queues may operate in any
order
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Asynchronous operation - queues
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Work is enqueued in queues 1 and 2 for the loops

Example

#pragma acc parallel loop async(1)
for (int i = 0; i<N; i++)
{
a[i] = i; }

#pragma acc parallel loop async(2)
for (int i=0; i<N; i++)
{
b[i] = 2*i;
}
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Asynchronous operation
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wait(1) and async(2) ensures that work queue 2 does not proceed
until queue 1 has completed.

Example

#pragma acc wait(1) async(2)
#pragma acc parallel loop async(2)
for (int i=0; i<N; i++)
{
c[i] = a[i] + b[i]
}

#pragma acc update self(c[0:N]) async(2)
#pragma acc wait
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Mandelbrot set
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• Modify a simple application that generates a mandelbrot
set

• Each pixel can be independently calculated, easy to
parallelize

• Data transfer to copy the results back is expensive hence
overlap it with computation
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Mandelbrot set
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Example

#pragma acc parallel loop
for(int y=0;y<HEIGHT;y++) {

for(int x=0;x<WIDTH;x++) {
image[y*WIDTH+x]=mandelbrot(x,y);

}
}
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Step 1 - Computation
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• Break the computation up into chunks of work that can
be performed independently

• Determine the starting and ending bounds for each block
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Step 1 - Computation
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Example

int num_blocks = 8;
for(int block = 0; block < num_blocks; block++)
{
int ystart = block * (HEIGHT/num_blocks),

yend = ystart + (HEIGHT/num_blocks);
#pragma acc parallel loop
for(int y=ystart; y < yend ; y++)
{

for(int x=0;x<WIDTH;x++) {
image[y*WIDTH+x]=mandelbrot(x,y);

}
}
}
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Step 2 - Data transfer

49/52

Example

int num_blocks = 8
int block_size = (HEIGHT/num_blocks)*WIDTH;
#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; block++ )
{
...

#pragma acc update self(image[block*block_size:
block_size])
}
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Step 3 - Overlapping computation
and data movement
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• The calculation and copying are still being done
sequentially

• Make the operations asynchronous so that the copies and
computation can happen simultaneously

• Use asynchronous work queues to ensure that the
computation and data transfer within a single block are in
the same queue

• The block number is convenient for this
• Now we need a wait directive after the block loop to

ensure that all work completes before it is copied to the
host
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Step 3 - Overlapping computation
and data movement
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Example

int num_blocks = 8,
block_size = (HEIGHT/num_blocks)*WIDTH;
#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; block++ ) {
...

#pragma acc parallel loop async(block)
for(int y=ystart;y<yend;y++) {
...

#pragma acc update self(image[block*block_size:
block_size]) async(block)}
#pragma acc wait
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Questions ?
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